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1. Iloczyn skalarny

Uwaga. Rozwazamy skonczenie wymiarowa przestrzen wektorowa V' nad ciatem K, gdzie K = R, C.
Definicja 1. Krotke (V, (-,-) : V x V — K) nazywamy przestrzenia unitarna, a (-, ) nazywamy ilo-
czynem skalarnym, gdy spelnione sa nastepujace warunki:

e liniowosé (awvy + Pug, w) = a (v1,w) + B (v2,w), gdzie o, B € K, vy, v2,w € V.

e symetria sprzezona (v, w) = (w,v), gdzie v,w € V.

e dodatnia okreslonosé (v,v) > 01i (v,v) =0 = v =0, gdziev e V.
Definicja 2. v,w € V sg prostopadte (ortogonalne), gdy (v, w) = 0.
Definicja 3. Dla S < V definiujemy dopelnienie ortogonalne S* = {v € V : V,cs5 (v,s) = 0}.

Definicja 4. Mowimy, ze V jest ortogonalna suma prosta A, B (nasze oznaczenie V = AKX B), gdy
V=A®Bi(a,b) =0 dla kazdego a € A,b € B.

Definicja 5. Zbi6r wektoréow {v1, ..., v} nazywamy ortogonalnym, gdy (v;,v;) = a;;0;; (delta Kro-
neckera). Zbior ortogonalny jest ortonormalny, gdy a,; = 1 dla kazdego ¢, j.

Propozycja 1. Zbior ortogonalny jest liniowo niezalezny.

Dowod. Jesli Zle a;v; =0,t0 0= Zle a; (v, v;) = o (v, v;), wiec a; = 0. O

Propozycja 2 (Procedura Grama-Schmidta). Kazda (skoriczenie wymiarowa) przestrzeri ma baze
ortogonalng.

Twierdzenie 1.
V=SKS

Dowéd. SN S+ ={0},bov e SNSt = (v,v) =0 = v =0, ortogonalnoéé S i S* z definicji.
Mamy S + S+ =V, bo mozemy zrobié¢ rzut prostopadly na S i mamy wzor

= | w— S <w7vi>v' . <w7vi>v'
w= ( Z (v, v;) Z) Jrz (v, v5) "

=1 i=1

To korzysta z wyboru bazy i skoniczonego wymiaru. O

Uwaga. Dla ustalonego v € V odwzorowanie V 3 w — ¢, (w) = (w,v) € K jest odwzorowaniem
liniowym.

Twierdzenie 2 (Riesza o reprezentacji). Odwzorowanie V > v — ¢, € V* jest surjekcja.

Dowdd. Dla funkcjonalu ¢ € V* checemy znalezé¢ v € V takie, ze ¢ (w) = (w,v). Dla zerowego
funkcjonatu mozna wziaé¢ wektor zerowy. Dla niezerowego dimker p = n — 1, wiec V = (w) K ker ¢

dla pewnego w € V. Ustalamy v = <‘f;(1fu)> w i dziata, bo zeruje sie na jadrze i ma odpowiednia warto$é

na w. O

Whiosek. Dla L € Lin (V, V) istnieje takie L* € Lin (V, V), ze (Lv,w) = (v, L*w).
Dowéd. Mamy ., (v) = (Lv,w). Z twierdzenia Riesza jest ¢, (v) = (v, v, ). Mozemy ustali¢ L* :
V3w —v,, €V.Zliniowosci iloczynu skalarnego wynika liniowos¢ takiego przeksztalcenia. [J
Definicja 6. A € Lin (V, V) jest operatorem:

1. normalnym, gdy AA* = A*A.
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2. hermitowskim, gdy A = A*.
3. unitarnym, gdy AA* = A*A = id.

Operatory unitarne lub hermitowskie sa normalne.
I Uwaga. Odwzorowania unitarne sg izometriami, bo (Av, Aw) = (v, A* Aw) = (v, w).
Twierdzenie 3 (Spektralne). A € Lin (V, V) jest operatorem normalnym wtedy i tylko wtedy, gdy

istnieje baza ortonormalna eq,...,e, taka, ze Ae; = \;e;, gdzie \; € C.

Przy zalozeniu normalnosci A jest hermitowski wtedy i tylko wtedy, gdy A; € R, a unitarny wtedy
i tylko wtedy, gdy |\;| = 1.

2. Formy dwuliniowe

I Uwaga. Dalej bedziemy rozwazaé przestrzenie wektorowe nad dowolnym ciatem K.

Definicja 7. Forma dwuliniowa to funkcja (-,-) : V- x V' — K taka, ze dla ustalonego v € V' funkcje
(-,v) i (v,-) sa liniowe.

Propozycja 3. Dla kazdej formy dwuliniowej na n-wymiarowej przestrzeni wektorowej i ustalonej
bazy B istnieje dokladnie jedna macierz Mp € K"*" taka, ze (v, w) = v5Mpwg. Podobnie dowolna
macierz M € K"*" zadaje forme dwuliniowa (v, w),, = vEMwp.

Dowéd. Niech B = {ey,...,e,}. Mamy e?MBej = (Mp)

n . n
v=1 . ve iw=) " we; mamy

;> wiec musi by¢ Mp = [(e;, €;)],;- Dla

O

Uwaga. W przypadku skonczenie wymiarowym dla zadanej bazy B mozemy utozsamié¢ forme dwu-
liniowa z odpowiadajaca jej macierza Mp.

Propozycja 4. Niech Mp, i Mp, beda macierzami pewnej formy dwuliniowej odpowiednio w bazach
Bi i By. Zachodzi Mg, = QT Mp,Q, gdzie Q jest odpowiednia macierza przejicia.
Dowéd. v} Mp,wp, = (Qua,)” Mp,Qup, = v} QT Mp,Qusp,. 0

Definicja 8. Macierze A i B nazywamy kongruentnymi, jesli istnieje taka odwracalna macierz @, ze
A = QT BQ. Piszemy wtedy A = B.

Definicja 9. Wyr6znik (dyskryminant) formy dwuliniowej (-, -) to wartosé
desc (-,-) = [det Mg] € K/K*z

bedaca klasa réwnowaznosci wyznacznika macierzy z doktadnoscia do mnozenia przez kwadrat ele-
mentu ciata.

Dla réznych baz By, B mamy det Mg, = det QT det Mp, det Q = det (Q)2 det Mp,, zatem wyroznik
jest dobrze okreslony.

Definicja 10. Funkcje 7 : V' — W miedzy przestrzeniami z zadanymi formami dwuliniowymi na-
zywamy izometria, jesli jest bijekcja i (Tv1,Tv2)y, = (v1,v2), . Przestrzenie nazywamy izometrycz-
nymi, jesli istnieje miedzy nimi izometria.
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Definicja 11. Dla zadanej formy dwuliniowej i elementéw x,y € V moéwimy, ze x jest prostopadle
doy (z L y), jesli (z,y) = 0.

Uwaga. Powyzsza relacja nie jest symetryczna, w przeciwienstwie do ortogonalnosci nad iloczynem
skalarnym.

I Definicja 12. Niech z € V' \ {0}. Wektor z jest izotropowy, jesli (x,2) =0 (czyli L ).

Definicja 13. Niech S < V. Definiujemy przestrzen ortogonalng

St ={veV Vs (s,0) =0}.

Definicja 14. Radykatem przestrzeni V nazywamy przestrzeii rad (V) = V+. Radykalem podprze-
strzeni S < V nazywamy jej podprzestrzeii rad (S) = S+ N S.

Uwaga. Forma dwuliniowa nie musi byé¢ symetryczna, mozna wiec rozrézniaé¢ prawe i lewe prze-
strzenie ortogonalne oraz radykaly:

St ={vEV Vs (5,0) =0}, radt(S)=5+nS
LS ={veEV Vs (v,5) =0}, *rad(S)=+5nNS.

W naszej definicji skupiamy sie na tych prawych.

Definicja 15. Przestrzenn V z forma dwuliniowa nazywamy nieosobliwa, jesli rad (V') = {0}. Prze-
strzeri nazywamy osobliwa lub zdegenerowana, jesli nie jest nieosobliwa. Przestrzen jest catkowicie
zdegenerowana, jesli rad (V) = V. Te same okreslenia stosujemy réwniez do formy dwuliniowej,
ktora rozwazamy.

Propozycja 5. 1. Przestrzen jest calkowicie zdegenerowana wtedy i tylko wtedy, gdy Mg = 0.
2. Przestrzen jest zdegenerowana wtedy i tylko wtedy, gdy det Mp = 0.

Dowdd. Dla zerowej formy dwuliniowej Mp = 0 przestrzen jest catkowicie zdegenerowana, nato-
miast jesli (Mp),; = A # 0, to el Mpe; = Nie; ¢ rad (V).

Jesli mamy det Mp = 0, to istnieje z € V' \ {0} taki, ze Mpx = 0. Zatem yT Mpxr = 01z € rad (V).
W druga strone y” Mz = 0 dla kazdego y implikuje Mpx = 0, czyli det Mp = 0. O

Definicja 16. Mowimy, ze V jest ortogonalng suma prosta podprzestrzeni A i B (V = AKX B), jesli
V=A®B oraz Vecapep a L b,b L a.

Twierdzenie 4. Niech W = L rad (V) Nrad (V). Istnieje taka przestrzeii S <V, ze V =W K S
oraz * rad (S) Nrad™® (S) = {0}.

Dowéd. Dopehiajac baze W do bazy V dostajemy przestrzen S taka, ze V = W ®S. Dla wszystkich
wektorow s € S,w € W mamy (s, w) = (w,s) =0, wiec V=W K S.

Ustalmy s € +rad (S) Nrad® (S). Dla dowolnego v € V jest v = w + s’ dla pewnych w € W,s’ € S,
wiec (v,8) = (w, s) + (s’,s) = 0 i analogicznie (s,v) = 0. Zatem s € W, czyli s = 0. To koriczy
dowod. O

Twierdzenie 5 (Riesz). Niech V bedzie nieosobliwa przestrzenia z formg dwuliniowa. Odwzorowanie
V 3v— (-,v) € V* jest iniekcja, a wiec izomorfizmem dla skoriczenie wymiarowych przestrzeni.

Dowdd. Jesli mamy (-,v) = 0 dla pewnego v, to Vyey (w,v) =0, czyli v € rad (V), wiec v = 0 z
nieosobliwosci. Zatem jadro odwzorowania jest trywialne. O

I Whiosek. Jesli S <V i S lub V jest nieosobliwa, to Vics- ey f(s) = (s,v) dla kazdego s € S.
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Dowdéd. Dla nieosobliwego S teza wynika z twierdzenia Riesza. Dla nieosobliwego V' mozemy roz-
szerzy¢ dowolne f € S* do funkcjonatu na V' (definiujac wartosei na elementach bazy V'), skorzystac
z twierdzenia Riesza i zacie$ni¢ odwzorowanie do S. O

I Uwaga. Dalej zakladamy, ze relacja L jest symetryczna.
Propozycja 6. Niech V' bedzie nieosobliwa przestrzenia wektorowa, S < V, dimV < oo i zat6zmy,
ze relacja | jest symetryczna. Zachodzi:

1. dim S + dim S+ = dim V.

2. ($1)" =s.

3. rad (S) =rad (S).

4. S jest nieosobliwa <= S= jest nieosobliwa.

Dowéd. 1. Z twierdzenia Riesza ¢ : V 3 v — (-,v) € S* jest surjekcja. Rownosé dimim ¢ +
dimker ¢ = dim V' daje nam teze.

2. Mamy dim S + dim S+ = dim V = dim S+ + dim (SJ-)J', ale S C (SJ—)L, wiec z réwnosci ich
(skoniczonych) wymiar6w mamy S = (SL)L.
3. rad () = SN 5L = (S4) T NS+ =rad (S4).
4. Natychmiast wynika z poprzedniego.
O

Twierdzenie 6. Niech V' bedzie przestrzenia wektorowa, S < V, dimV < oo i zalézmy, ze relacja L
jest symetryczna. Nastepujace warunki sg réwnowazne:

1. V=SKSt
2. V=Sest
3. SnSt={o0}.

4. S jest nieosobliwa.

Dowdd. Definicje sumy ortogonalnej i przestrzeni ortogonalnej natychmiast daja nam (1 < 2)
oraz (1 = 3). Rownowaznosé (3 <= 4) wynika z definicji nieosobliwosci.

(3 = 2) Dla odwzorowania ¢ : V 3 v — (-,v) € S* mamy
dim V = dimker ¢ 4+ dimim ¢ = dim S* + dimim ¢ < dim S+ + dim S.
7 drugiej strony mamy
dimV > dim (S + $*) = dim S + dim S* — dim (S N S*) = dim S + dim S*.

Zatem dimV = dim S + dim S+ = dim (S + S*), wiec ze skoticzono$ci wymiaru V =5+ S+. O

3. Klasyfikacja form dwuliniowych
2025-10-17

Definicja 17. Forme dwuliniowa (-, -) nazywamy
e symetryczna, jesli (z,y) = (y, z).
e antysymetryczna, jesli (z,y) = — (y, x).
e alternujaca, jesli (x,z) = 0.

Uwaga. Forma dwuliniowa jest (anty)symetryczna wtedy i tylko wtedy, gdy jej macierz roéwniez
jest (anty)symetryczna. Forma dwuliniowa jest alternujaca wtedy i tylko wtedy, gdy jej macierz jest

3. Klasyfikacja form dwuliniowych Strona 5/22
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I antysymetryczna i ma zera na przekatnej.

Propozycja 7. Jesli charK # 2, to forma dwuliniowa jest alternujaca wtedy i tylko wtedy, gdy
jest antysymetryczna. Jesli char K = 2, to jesli forma jest alternujaca, to jest antysymetryczna.
Dodatkowo antysymetrycznos$é jest rownowazna symetrycznosci.

Dowéd. (=) Mamy 0 = (z+y,z+y) = (z,2) + (z,9) + (y,2) + (v, 9) = (2, y) + (y, ), wiec

(z,y) = —(x,y). Dziala to przy charakterystyce 2, w ktorej dodatkowo mamy —1 = 1, wiec
(<) Mamy (z,z) = — (z,x), czyli 2 (x,x) =0, a wiec (z,z) =0, o ile char K # 2. O

Twierdzenie 7. Dla char K # 2 kazda forma dwuliniowa jest sumg formy symetrycznej i alternujace;j
(antysymetrycznej).

(m’y>+<y’z> (x,y>7<y,z)
2 2

Dowéd. Dla zadanej formy (-, -) definiujemy (z,y), = oraz (x,y), = . Te formy
speliaja odpowiednie wlasnosci i sumuja sie do zadanej formy. O

Uwaga. Powyzsze twierdzenie mozna wypowiedzie¢ w nastepujacy sposob: przestrzen form dwuli-
niowych jest suma algebraiczna (a nawet prosta) przestrzeni form symetrycznych i antysymetrycz-
nych.

Twierdzenie 8. Niech (-,-) bedzie forma dwuliniowa na przestrzeni V. Relacja prostopadlosci L
zwiazana z (-, -) jest symetryczna wtedy i tylko wtedy, gdy forma jest symetryczna lub alternujaca.

Dowéd. (=) Oznaczmy Z (V) = {v €V : Vyev (v,w) = (w,v)}. Latwo sprawdzi¢, ze jest to
podprzestrzein V. Jesli mamy (xg,z0) # 0 dla pewnego xg, to dla dowolnego v € V mozemy
zdefiniowaé¢ w = (xg,v) xg — (xo, o) v 1 policzyé

(xo,w) = {x0,v) {(x0, o) — (T0, To) (To,v) = 0.

Zatem o L w, czyli 0 = (w,zg) = (xg,v) (x0, Zo) — (o, x0o) (v, x0), Wiec (v, o) = (zg,v). Z tego
wynika xg € Z (V). Zalozmy, ze forma nie jest alternujaca i ustalmy xg spelniajace (g, zg) # 0. Dla
dowolnego v € V znajdziemy takie o € K*, ze zo + av € Z (V). Wtedy dostaniemy v € Z (V'), bo
Z (V) jest przestrzenia wektorows. Mozemy zatozy¢, ze (v, v) = 0 (bo inaczej v € Z (V) i przeliczy¢

{xo + aw, zo + aw) = (o, To) + @ (x0,v) + a (v, zo) + & (v,v) = (w0, z0) + 2 (0, V) .

Dla charK = 2 lub (zg,v) = 0 ta warto$¢ wynosi (zg,z9) # 0. Inacze] mozna ustalic o« =
2-1 (xo,vyl (x0,x0) — wtedy wynosi ona 2 (xg,zg) # 0. W obu przypadkach mamy teze, a wiec
Z (V) =V iforma jest symetryczna.

( <) Symetryczna forma oczywiscie zadaje symetryczna prostopadlogé. Alternujaca norma jest
antysymetryczna, a wiec (x,y) = 0 implikuje (y,z) = —0 = 0. O

Propozycja 8. 1. Baza ortogonalna istnieje wtedy i tylko wtedy, gdy V = RV (1) dla pew-
nych wektoréw v;.

2. Forma alternujaca ma baze ortogonalng wtedy i tylko wtedy, gdy (-,-) = 0.

3. Dla char K # 2 kazda forma alternujaca i symetryczna jest stale réwna 0.

Definicja 18. Plaszczyzna hiperboliczna nazywamy dowolna przestrzen span {es, ea}, gdzie e, €5 sa
takimi wektorami, ze (e1,e1) = (ea,e2) = 0 oraz (e, es) = 1. Pare wektorow rozpinajacych plasz-
czyzne hiperboliczng nazywamy para hiperboliczna. Przy ustalonej wartosci (es,e1) (na przyktad
przy zalozeniu symetrycznosci lub alternujacosci) widzimy, ze kazde dwie ptaszczyzny hiperboliczne
sa izometryczne.

Definicja 19. Nieosobliwa przestrzen wektorowa z alternujgcg forma dwuliniowg jest nazywana prze-
strzenia symplektyczna.
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Twierdzenie 9. Niech (V] (,-)) bedzie nieosobliwa przestrzenia z alternujaca forma dwuliniowa.
Wtedy V = KF_,H;, gdzie H; jest pewna alternujaca plaszczyzng hiperboliczna. W szczegolnosci
dimV = 2k.

Dowéd. Dowod przeprowadzimy indukcjg po wymiarze V. Dla dim V' = 1 forma alternujaca musi
by¢ zerowa, wiec V nie jest nieosobliwa, dla dim V' = 2 ustalmy 0 # v; € V, wtedy z twierdzenia
Riesza istnieje vy € V takie, ze (v1,v2) = 1. Te wektory sa liniowo niezalezne, bo inaczej (vy,v9) =
a{vi,v1) = 0. Zatem V = span{vi,va} jest plaszczyzna hiperboliczna, co konczy dowdd bazy
indukcji.

Dla dim V' > 2 ustalmy (podobnie jak przedtem) wektory vy,vy € V' tworzace pare hiperboliczna.
Podprzestrzen H; = span {vy, vo} jest nieosobliwa ({aqv1 4+ agvg, 101 + Bava) = ayfa — a3y, jesli
to ma si¢ zerowaé¢ dla kazdych oy, as, to B = B2 = 0), wiec V = H; X Hi- i Hi jest nieosobliwa,
czyli mozna skorzystaé z zalozenia indukcyjnego i zakonczyé dowdd. O

Whiosek. Jesli M jest macierza, alternujaca, to istnieje odwracalna macierz ) taka, ze

[0 1
-1 0
0 1

M =Q" o Q.

L . .10 1
czyli najpierw mamy na przekatnej bloki ol’ a potem zera.

Uwaga. Dowolna forma alternujaca jest z dokladnoscia do izometrii okreslona przez dwie liczby:
r=dimrad (V) is=dimS, gdzie V =rad (V)X S i S jest nieosobliwa.

Lemat 1. Zal6zmy, ze char K = 2 i niech V' = (ej, u1, u2) ma forme dwuliniowa zadana macierza

oS O 8

0
0
1

S = O

gdzie a # 0 (czyli V jest suma plaszczyzny hiperbolicznej i przestrzeni rozpinanej przez wektor o
niezerowej normie). Wtedy V = X2_; (v;) dla pewnych wektoréw vy, va, vs.

Dowéd. Ustalmy
vy =e1 +ur +us, vo=e;+tauy, vz=-e1+(1+a)u+ us.

Mamy (v1,v2) =a+a=2a=0, (v1,v3) =a+1+14+a=0, (v2,v3) = a+a = 0. Zatem te wektory
ortogonalnie rozpinaja calay przestrzen. O

Twierdzenie 10. Niech (V;(:,-)) bedzie przestrzenia z niealternujaca, symetryczng forma dwuli-
niowa. Wtedy istnieje baza ortogonalna V, czyli V = KHRV ().

Dowdd. Dla przestrzeni jednowymiarowej teza jest oczywista. Dalej zakladamy dim V' > 2. Istnieje
v € V takie, ze (v,v) # 0. Mozemy zapisa¢ V = (v) K ((v))" = (v) K V', gdzie dim V' = dim V — 1.
Jesli V' jest niealternujaca, to mozemy skorzystaé z indukcji.

Dalej zalozmy, ze V' jest alternujaca. Jesli charK # 2, to (-,-) na V' jest alternujaca, czyli anty-
symetryczna, a do tego symetryczna, wige (-,-) [y = 0. Zatem V' jest catkowicie zdegenerowana i
dowolna baza V' jest bazg ortogonalng.
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Dla charK = 2 mozemy zapisa¢ V' = X7, H; K rad (V’). Stosujac powyzszy lemat do kazdej z
przestrzeni (v) + H; dostajemy baze ortogonalna calej przestrzeni. O

Whiosek. Jesli M jest macierza symetryczna i char K # 2, to istnieje taka odwracalna macierz @,
ze M = QT diag (x1,...,2,)Q dla pewnych z1,...,7,. Ta sama teza zachodzi, jedli charK = 2 i
przekatna nie jest zerowa.

Propozycja 9. Niech F' bedzie niealternujaca, symetryczna, nieosobliwg formg dwuliniows o macie-
rzy M nad cialem K. Jesli K jest algebraicznie domkniete, to M = I (forma jest identycznoscig w
pewnej bazie).

Dowdd. Wiemy, ze M = diag(z1,...,z,). Mozemy przeskalowa¢ wektory z bazy: e; — \/%ei
(pierwiastki istnieja z domknietosci algebraicznej), dostajac M = I (domnazamy z prawej i lewej
przez diagonalng macierz przejscia). O

Propozycja 10. Niech F' bedzie niealternujaca, symetryczna, nieosobliwa forma dwuliniowa, o ma-
In OnXm

mxn _Im

cierzy M nad cialem K. Jesli K =R, to M =

Dowéd. Wiemy, ze M = diag (z1, ..., Zntm). Mozemy przeskalowaé wektory z bazy: e; — \/%ei,

A

dostajac M = diag (£1,...,%1). Teraz wystarczy przepermutowaé¢ wektory bazowe. O

Propozycja 11. Niech F' bedzie niealternujaca, symetryczna, nieosobliwa forma dwuliniows, o ma-
cierzy M nad ciatem K. Jesli K = Fqgr, to M = I.

2k—1 2

Dowdéd. Dla kazdego a € Fyrx mamy (a = a, wiec kazdy element jest kwadratem i mozna

postapié¢ jak w przypadku ciata algebraicznie domknietego. O

Lemat 2. Niech g bedzie potega liczby pierwszej wiekszej od 2.

o Kwadratéw w ciele F, jest dokladnie %1.

e Niech d € F, nie bedzie kwadratem. Dla kazdego z € F, albo z = y?, albo x = dy? dla
pewnego .
e Dla kazdego = € F, istnieja takie y, 2z € F,, ze x = y? + 22
Dowad. e p:Frozx— z? € [y jest homomorfizmem, ker ¢ = {1, —1}, wszystkich niezerowych

[Fal _
fker ] —

kwadratow jest |Im | = q%l, doliczajac 0 mamy teze.

e Niech S bedzie zbiorem wszystkich niezerowych kwadratow. S i dS to jedyne warstwy ¢, wiec

kazdy niezerowy element nalezy do jednej z nich.
e Niech T bedzie zbiorem wszystkich kwadratow. Mamy |T| = |z — T| = 4+
maja niepuste przeciecie.

, wiec te zbiory

O

Propozycja 12. Niech F' bedzie niealternujaca, symetryczna, nieosobliwg forma dwuliniows o ma-
cierzy M nad cialem K. Jesli K = F, i ¢ jest potegg liczby pierwszej wigkszej od 2 a d € F, nie jest
kwadratem, to M = diag (1,...,1,¢), gdzie ¢ € {1,d}.

Dowéd. Dla dim V' = 1 mamy M = [z] i mozna przeskalowa¢ przez kwadrat, dostajac [1] lub [d].
Dalej wystarczy rozwazyé¢ dimV = 2, bo dla wiekszych wymiaré6w mozna indukcyjnie rozpatrzeé
kolejne minory: diag (ay,as,...,a,) = diag (1,¢,as,...,a,) = diag(1,1,¢,...,a,) i tak dalej.

Mamy mozliwosci o> 0 a® 0 da* 0 Pierwsze dwie po przemnozeniu przez kwa
Zliw , , . wsze dw 7z 7 zez kwa-
Y o »2|’ o a2’ |0 a? po P P
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d 0
draty daja nam postaé¢ z tezy. Ostatnia mozna zredukowaé do [0 al Ustalmy «, 8 € F, takie, ze

a?+ 2 = d~!. Polézmy u = aey + fe; oraz v = fe; — aep. Mamy (u,u) = (v,v) =d (a? + %) = 1.
Do tego (u,v) = afd — fad = 0. Zatem znalezliémy baze, w ktorej nasza forma jest zadana przez
identycznosé. O

4. Twierdzenia Witta

Lemat 3. Niech f : A — B bedzie izometriag pomiedzy dwoma alternujacymi lub symetrycznymi
przestrzeniami i niech A = A; X Af-. Wtedy f (A;)" = f (47).

Dowéd. Ustalmy a € AL i b = f(d') € f(A1). Wtedy (f (a),b) = (a,a’) = 0. Z tego wynika
f (Al)J‘ o f (Af-), a te przestrzenie majag ten sam wymiar, wiec mamy réwnosc. O

Lemat 4. Niech V, W beda nieosobliwymi przestrzeniami z formami dwuliniowymi. Do tego zat6zmy,
ze te przestrzenie sa alternujace (alternatywnie: ze sa symetryczne i char K # 2). Niech S < V,
T < W bedg izometryczne. Obie podprzestrzenie S, T' posiadaja uzupelnienia nieosobliwe, to znaczy
takie minimalne S < ViT < W, 2e S < S, T <T i8S, T sa nieosobliwe. Do tego mozna wskazaé
takie S, T, ze dowolna izometria f : S — T rozszerza sie do izometrii f: S — T.

Dowdd. Rozwazmy dowolny wektor izotropowy u € V' i podprzestrzenn E taka, ze (u) X E < V.
Twierdzimy, ze istnieje taki wektor izotropowy v € B+, e (u,v) = 1.

Mamy u ¢ E = (EL)l, wiec istnieje v € E* taki, ze (u,v) # 0. Odpowiednie przeskalowanie v daje
nam (u,v) = 1. Jesli V jest alternujaca, to (v,v) = 0 mamy od razu. Jesli nie jest, to zauwazmy,
ze au +v € B+ dla kazdego o € K. Do tego (u,au +v) = 1. Mozemy zalozyé¢ symetrycznoéé i
charakterystyke rozna od 2, wiec (au + v, au + v) = 2a+ (v, v) 1 podstawienie o = —% daje nam
szukany izotropowy wektor au + v.

Niech S = rad (S) K Ug, gdzie Ug jest nieosobliwa i rad (S) = (r1,...,rr). Podstawiajac w po-
przednich rozwazaniach u = r1 i E = (ro,...,rs) ¥ Ug dostajemy wektor sy taki, ze r1,s; jest
para hiperboliczna. Powtarzajac dla u = ro i E = (ry,73,...,7r;) K Ug dostajemy odpowiednie 5.
Kontynuujac dostajemy przestrzeri S = (ry, s1) X... X (ry, s;) X Ug, ktora jest nieosobliwa, bo jest
ortogonalng suma, przestrzeni nieosobliwych (ptaszczyzna hiperboliczna jest nieosobliwa). Do tego
S jest minimalng taka nadprzestrzenia S, bo usuniecie z niej s; powodowaloby, ze 7; znalazloby sie
w radykale.

Podobnie mamy rozktad T' = rad (T') X Ur, gdzie rad (T') = (f (r1), ..., f (rx)). Ta postaé radykatu
wynika z faktu, ze f (rad (S)) C rad (T) oraz f~* (rad (T)) C rad (S), czyli f (rad (S)) = rad (T).

Mamy wigc uzupelnienie nieosobliwe T = (f (r1),51) K ... K (f (1%), k) X Ur oraz wiemy, ze

f (Us) = Ur. Pozostatlo nam zdefiniowaé f(sl) = §;. Odwzorowanie f = f U f jest izometrig, bo
jest nig na kazdej sktadowej ortogonalnej. O

Lemat 5. Niech V, W beda nieosobliwymi, izometrycznymi przestrzeniami z formami dwuliniowymi.
Do tego zalozmy, ze te przestrzenie sa symetryczne i charK # 2. Ustalmy w,v € V takie, ze
(u,u) = (v,v) # 0. Wtedy istnieje izometria f: V — W taka, ze f (u) = v lub f (u) = —v.

Dowéd. Latwo pokazaé, ze jesli (w, w) # 0, to oy (x) = x—2%w jest izometria (odbicie wzgledem
wektora). Mamy u + v L u —v. Co najmniej jeden z tych wektoréw jest nieizotropowy, bo gdyby

oba byty, to u + v 4+ u — v = 2u tez, ale wtedy u bylby izotropowy.

Jesli (u+v,u+v) # 0, to Oyyy (u+v) = —(u—+v), Oyty (u—v) = u — v. Dodajac stronami
Oyt (2u) = —2v, mozna skrocié dwojki i mamy o4, (u) = —v. Jedli (u — v, u — v) # 0, to analo-
gicznie o, (u) = v. O

Twierdzenie 11 (Witta o skracaniu). Niech V, W beda nieosobliwymi, izometrycznymi przestrzeniami
z formami dwuliniowymi. Do tego zalozmy, ze te przestrzenie sa alternujace (alternatywnie: ze sa
symetryczne i char K # 2). Niech V = SX S+ i W = TR T+ dla pewnych S < V,T < W takich,
ze S i T sa izometryczne. W takiej sytuacji S+ jest izometryczne z T+.
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Dowdd. S jest nieosobliwa, bo V = S X S+. Zatem S+ réwniez jest nieosobliwa. Podobnie T+ jest
nieosobliwa.

Dla formy alternujacej mamy S ~ T <= dim S = dim7T <= dim S+ =dim7T+ <= St ~T*t,
bo przestrzeni nieosobliwa z formag alternujaca jest sumg ortogonalna ptaszczyzn hiperbolicznych.
Teraz rozwazymy przypadek formy symetrycznej.

Bez straty ogolnosci mozemy przyjac¢ V = W, bo jesli o : V. — W jest izometria, to TRT+ = W =
o(V)=0(S)No (5+) =0 (S)NRo (S)J‘. Jesli udowodnimy twierdzenie dla V' = W, to dostaniemy
o (8)t ~TL a8t~ (S)" danam teze.

Jedli dim S =1, to S = (u), T = (v) i mamy (u) X S+ = (v) X T+. Wiemy, ze istnieje izometria f :

S — T i mozemy wybraé v tak, ze v = f (u). Wiemy, ze (u,u) = (f (u), f (u)) # 0 (nicosobliwosc),

wicc istnieje izometria ¢ : V — V taka, ze ¢ (u) = +f (u). W szczegolnosci ¢ (S) = T, wiee ¢ (S+) =
L s . a_ g .

¢ (S)” =T+ i mamy odpowiednia izometrie.

Teraz pokazemy krok indukcyjny. Niech dimS = k + 1 i niech f : S — T bedzie izometria. Wy-
bierzmy nieizotropowy wektor u € S i polozmy S = (u) X U. Takie u istnieje, bo gdyby forma
byla alternujaca, to wobec charakterystyki réznej od 2 bylaby zerowa, a wiec osobliwa. Mamy
(WyRUK S+ = (f (u)) R f (U)X TL. Z bazy indukeji istnieje izometria ¢ : UK S+ — f (U)K T.

Zawezajac sie do przestrzeni V' = f (U)XT* = ¢ (U)R¢ (S*) dostajemy z zalozenia indukcyjnego,
e T+~ ¢ (SL), a ¢ (SL) ~ S wiec mamy teze. O

Twierdzenie 12 (Witta o przedtuzaniu). Niech V, W beda nieosobliwymi, izometrycznymi przestrze-
niami z formami dwuliniowymi. Do tego zalézmy, ze te przestrzenie sa alternujace (alternatywnie:
ze sg symetryczne i char K = 2). Niech S < V,T < W iniech f : S — T bedzie izometriag. Wtedy
istnieje izometria f: V — W taka, ze ﬂs = Jfa

Dowéd. Wiemy, ze mozemy rozszerzy¢ f do izometrii f zdefiniowanej pomiedzy uzupelnieniami
nieosobliwymi S i T. Zatem mozemy bez straty ogolnosci zatozyé, ze S i T sa nieosobliwe. Wtedy
V = SKS+, W = TRT*. Z twierdzenia o skracaniu istnieje izometria o : S+ — T*. Kazdy element
v € V mozna jednoznacznie przedstawi¢ w postaci v = s + s’ dla s € S i s’ € S*. Definiujemy

f(s+s)=f(s)+0c(s), co jest izometria. O

5. Teoria kategorii
2025-11-14

Definicja 20. Mamy klase obiektow C. Dla kazdych A, B € C mamy klase morfizmoéw Home (A, B)
postaci f : A — B, ktére mozna sktadaé i ktore spelniaja aksjomaty:

1. Jedli mamy morfizmy f € Home (4,B) i ¢ € Home (B,C), to istnieje morfizm g o f €
Home (4, C).

2. Dla kazdego A € C istnieje dokladnie jeden morfizm id4 € Home (A, A) taki, ze idgog=g 1
foids = f dla g € Home (C,A) i f € Home (A, B). Inaczej moéwiac, ponizszy diagram jest
przemienny.

ida

¢

C%A%B

3. Skladanie jest taczne fo (goh) = (fog)oh.

Przykfad. 1. W kategorii zbioréw morfizmami sa wszystkie funkcje.
2. W kategorii grup morfizmy to homomorfizmy grup.
3. W kategorii przestrzeni topologicznych morfizmy to funkcje ciagte.

4. W kategorii przestrzeni wektorowych morfizmy to funkcje liniowe. Kategoria przestrzeni wek-
torowych nad ustalonym ciatem jest podkategoria tej kategorii.
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Definicja 21. Praporzadkiem (pre-order) nazywamy relacje zwrotna, przechodnia, ale niekoniecznie
antysymetryczna. Kazdy praporzadek zadaje kategorie, w ktorej obiektami sa elementy porzadko-
wane przez praporzadek, a morfizm a — b istnieje doktadnie wtedy, gdy a < b.

Definicja 22. Dla kategorii A i B funktorem nazywamy odwzorowanie F' : A — B przyporzadko-
wujace obiekty z jednej kategorii obiektom z drugiej kategorii, ktéremu towarzyszy odwzorowanie
migdzy morfizmami F' : Homy (A1, A2) — Homp (F' (A1), F'(Az)) takie, ze F'(id4) = idp(a) oraz
F(fog)=F(f)oF(g)

Przykfad. Istnieja funktory zapominania (forgetful), ktore sa zanurzeniem w wieksza kategorie, na
przyklad z przestrzeni topologicznych w zbiory.

Definicja 23. O zwyktych funktorach méwimy, ze sg kowariantne. Funktor jest kontrawariantny, jesli
indukowany funktor na morfizmach prowadzi Hom 4 (A1, A2) — Hompg (F (As2), F' (A1)). Wtedy tez

F(fog)="F(g)oF(f)

Definicja 24. Dla ustalonego A € C funktorem Yonedy nazywamy funktor C 5 X — Hom (A4, X) €
Set, ktory kazdemu X przyporzadkowuje zbior morfizméw z A do X. Kontrawariantny funktor
Yonedy dokonuje przypisania C 3 X — Hom (X, A) € Set.

Definicja 25. Niech F,G : A — B beda funktorami (kowariantnymi). Naturalna transformacja
F = G to kolekcja morfizmow nx : F (X) — G (X) takich, ze dla morfizmu f : X — Y istnieje
morfizm 7y : F'(Y) — G (Y) taki, ze ponizszy diagram jest przemienny, czyli G (f)onx = ny oF (f).
Dla funktoréw kontrawariantnych odpowiednie strzalki sie odwracaja.

F(X) 5 G(X)

lF(f) lcm
)

FY) 25 Gy

Definicja 26. Naturalny izomorfizm F' ~ G to naturalna transformacja taka, ze kazde nx : F (X) —
G (X) jest izomorfizmem.

Przyktad. Wiemy, ze dla skoniczenie wymiarowej przestrzeni wektorowej V o bazie {e1,...,en}
mamy izomorfizm z V* zadany przez baze {ej,...,e}}. Taki izomorfizm nie jest naturalny. Z kolei
odwzorowanie V3 v — (V* 3 f — f (v)) € V** jest naturalnym izomorfizmem.

Definicja 27. Rozwazmy praporzadek i funktor F' z tego praporzadku w kategorie C. Ten funktor
zadaje nam obiekty {C;} oraz morfizmy f;; : C; — C; dlakazdych ¢, j takich, ze ¢ < j. Stozkiem tego

Ap
funktora nazywamy obiekt Ap taki, ze istnieja morfizmy ¢; : Ap — C; takie, ze (‘Df/ \%
@ — @
jest przemienny. Kostozkiem nazywamy element Vg taki, ze istnieja morfizmy ¢, : C; — V takie,

CiL)Cj

ze %\N )/%_ jest przemienny.
Ve

Definicja 28. Rozwazmy praporzadek i funktor F' z tego praporzadku w kategorie C. Granica nazy-
wamy taki stozek Xii,, ze dla kazdego stozka X istnieje jedyny morfizm ¥ : X — X);,,,, dla ktérego
ponizszy diagram jest przemienny.
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Definicja 29. Rozwazmy praporzadek i funktor F' z tego praporzadku w kategorie C. Kogranicy
nazywamy taki kostozek Y, ze dla kazdego kostozka Y istnieje jedyny morfizm ¥ : V};,, — Y, dla
ktorego ponizszy diagram jest przemienny.

Oi fij

Twierdzenie 13. Jesli (ko)granica istnieje, to jest jedyna z dokladnoscia do jedynego izomorfizmu.

Dowdd. Z przemiennosci ponizszego diagramu mamy, ze dy; =Vo U iidy,, =¥ oW.
1m

6. Produkt tensorowy

Definicja 30. Niech Vi,..., Vi, W bedg przestrzeniami wektorowymi nad ciatem K. f: V; x ... x
Vie — W jest forma k-liniowa, jesli jest liniowa ze wzgledu na kazda wspoltrzedna.

Definicja 31. Niech V,...,V, beda przestrzeniami wektorowymi nad cialem K. Produktem (ilo-
czynem) tensorowym nazywamy (jedyny) obiekt V1 ®...Q V) wraz z k-liniowym morfizmem IT taki,
ze dla dowolnego W i k-liniowego ¢ : Vi x ... x Vj — W istnieje jedyne odwzorowanie liniowe
UV:Vi®...0V, — W takie, ze ponizszy diagram jest przemienny.

@
Vi X ...x V, —kliniowe oy

k-liniowe - U
7 liniowe
P
P

Viw...V,

I Uwaga. Jesli produkt tensorowy istnieje, to jest jedyny z doktadnoscig do jedynego izomorfizmu.

Lemat 6. Dla dowolnych przestrzeni A, B, C' zachodzi
(A®B)®C~A®BR®C~A®(B®C(C).

Zatem produkt tensorowy trzech przestrzeni jest tym samym, co produkt tensorowy produktu ten-
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sorowego dwoch przestrzeni z trzecia przestrzenia.

Dowéd. Pokazemy, ze (A ® B) ® C spelnia te sama wlasnosé uniwersalna, co A ® B ® C. Dowod
dla A® (B ® O) jest identyczny.

Niech ¢ : A x B x C — W bedzie odwzorowaniem 3-liniowym. Dla ustalonego ¢ € C' odwzorowanie
zadane przez . = ¢ (+,+,¢) : A x B — W jest dwuliniowe, wiec z wlasnosci uniwersalnej A ® B
istnieje liniowe odwzorowanie . : A ® B — W takie, ze ¢, = . o II.

AxB 25w

R
n

A®B

Funkcja @ : (A® B)xC 3 (z,¢) = @, (x) € W jest dwuliniowa. Rzeczywiscie, liniowosé ze wzgledu
na pierwszy argument wynika z liniowosci ®., a liniowosé ze wzgledu na drugi wynika z tego, ze dla
¢, € C mamy pactpe = ape + oo = (@@ + fPo) o II, wiec Ppetper = a®. + SP z jedynosci
funkcji @, dla ustalonego c.

Zatem z wlasnosci uniwersalnej dla produktu tensorowego (A ® B) ® C istnieje dokladnie jedna
funkcja ¥ : (A® B) ® C — W taka, ze dolna cze$¢ ponizszego diagramu jest przemienna. Mamy
v = ® o (II,id), wiec jej przemiennosé jest rownowazna z przemiennoscia catego diagramu. Zatem
U jest jedyng funkcja, dla ktorej ten diagram jest przemienny i mamy teze.

AxBxC —2 W
(H,id)l - v

(A®B)xC — (A®B)®C
m

Lemat 7. Niech A®k B bedzie takim obiektem (z zadana forma dwuliniowa Il : Ax B — AQk B),
ze dla kazdego dwuliniowego £ : A x B — K istnieje jedyne odwzorowanie liniowe ¥ : A ®x B — K
takie, ze ponizszy diagram jest przemienny. Wtedy A ®x B ~ A® B.

AXB%K

A
H]Kl ’//:I/

A@Ké

Dowéd. Mamy W ~ K™ dla pewnego n. Niech ¢ : A x B — W bedzie dwuliniowe. Wtedy jego rzut
na i-tg wspolrzedng p; = m; o ¢ (gdzie 7; jest rzutowaniem K" — K polaczonym z izomorfizmem
W ~ K") rowniez jest dwuliniowy. Zatem istnieje jedyne odwzorowanie liniowe ¥; : A ®g B — K
takie, ze p; = U, ollg. Zdefiniujmy ¥ = Y7 | 1;0¥; (gdzie ¢; jest zanurzeniem K — K" polaczonym
z izomorfizmem K" ~ W). Mamy ¢ = > -, ¢; 0 p; = ¥ o Il. Do tego ¥ jednoznacznie wyznacza
U; = m; o U, wiec jest jedyne. Cala sytuacje obrazuje ponizszy diagram.

® ~ e —
AxB —— WxK' —2K

T u
H[Kl //// /I

I Notacja. przez BiLin (A, B) oznaczamy przestrzeni form dwuliniowych A x B — K.

Twierdzenie 14. Dla skoriczenie wymiarowych przestrzeni A, B produkt tensorowy A ® B istnieje.

Dowéd. Pokazemy, ze odpowiednim produktem tensorowym jest przestrzen BiLin (A, B)* (prze-
strzenn dualna form dwuliniowych). Juz wiemy, ze wystarczy wykazaé¢ wlasnosé uniwersalna dla
morfizméw idacych w ciato. Zaczynamy od zdefiniowania odwzorowania II : A x B — BiLin (4, B)"
wzorem II (a, b) (f) = f (a,b).
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Niech ¢ : A x B — K bedzie forma dwuliniowa. Definiujemy ¥ : BiLin (4, B)" > F — F (¢) € K.
Mamy (¥ oIl) (a,b) = I (a,b) (p) = ¢(a,b). Niech A’, B’ beda bazami odpowiednio A i B. Za-
uwazmy, ze rozwazana przestrzent funkcjonatow BiLin (A, B)" jest rozpinana przez zbiér funkcjona-
tow {f — f(a,b):a € A',b € B'}, co wynika z konstrukcji bazy przestrzeni dualnej (tutaj wazny
jest skoniczony wymiar). Zatem II (A x B) = BiLin (4, B)* i ¥ jest wyznaczone jednoznacznie, bo
wartosci na II (A x B) musza by¢ takie, jakie sa.

AxB —2 4K

BiLin (4, B)"
0

Uwaga. Istnienie produktu tensorowego dwéch przestrzeni implikuje istnienie produktu tensorowego
dowolnej skonczonej iloci przestrzeni. Zatem wiemy, ze produkt tensorowy Vi ® ... ® Vj istnieje.

Definicja 32. Niech V,W beda przestrzeniami wektorowymi nad K. Przez A (V,W) oznaczamy
(wolna) przestrzeri wektorowa nad K o bazie {e, ., : v € V,w € W}. Wprowadzamy oznaczenie v ®
W= €y -

Przykfad. Jesli K = C, dimV = dimW = 1, to w A (V,W) mamy baze {z1 ® 23 : 21,22 € C}, a
wiec dim A = c.

Definicja 33. Dla przestrzeni wektorowych V, W oraz przestrzeni A (V, W) definiujemy

(aw) ® (Bw) — af (v w),
L=span{ (v1+v2)Qw—-v1Qw—v2Qw :o,B €K, v,v1,v2 € V,w,wi,wa €W

VR (W +wa) —v W — U wsy

Twierdzenie 15. A (Y, W)/E wraz z odwzorowaniem IT : V x W 3 (v,w) — [v @ w] € AWV, W)/E
jest produktem tensorowym V & W.

Dowéd. Dwuliniowo$é IT wynika wprost z definicji przestrzeni £. Niech ¢ : V- x W — T bedzie
dwuliniowe. Definiujemy ¥ : AV, W)/E > v®@w] = ¢ (v,w) € T poprzez wskazanie wartosci na
bazie. Jest to dobrze okreslone, bo z dwuliniowosci ¢ przestrzen L lezy w jadrze odwzorowania
v w — @(v,w), a wiec to odwzorowanie faktoryzuje sie przez iloraz. Oczywiscie U oIl = .
Wartos¢ ¥ na wektorach postaci [v ® w] jest wymuszona przez ¢, a wiec ¥ jest jedyne. O

Twierdzenie 16. Niech F i F' beda bazami V i W. Przestrzen span{e ® f : e € E, f € F'} z zadanym

odwzorowaniem IT (ZGGE A€, Y rep bff) =Y cem fer Gebse® f jest produktem tensorowym V ®
w.

Dowéd. Dwuliniowo$é 1T jest jasna. Niech ¢ : V x W — T bedzie dwuliniowe. Niech ¥ (e ® f) =
ple,f)ydlaee E, f € F. Oczywiscie ¥ o Il = ¢, a jedyno$¢ wynika z tego, ze ¢ wymusza wartosci
nae® f. U

Uwaga. WskazaliSmy trzy izomorficzne konstrukcje produktu tensorowego. W pierwszej dowdd je-
dynosé wymagal wskazania bazy, w trzeciej sama konstrukcja tego wymagata. W drugiej nie korzy-
staliSmy z wyboru bazy, ale wprowadzone definicje byly duzo bardziej rozbudowane niz w dwoch
pozostalych konstrukcjach.

Mamy izomorfizm miedzy trzecig a druga konstrukcja zadany przez e ® f — [ee,f]. O przestrzeni
V ® W bedziemy zazwyczaj mysle¢ jak o przestrzeni kombinacji liniowych elementéw postaci v ®
w z bazag {e® f:e€ E, f € F} (trzecia konstrukcja), w ktorej ,operator” ® jest dwuliniowy —
(1 +v2) ®wW =v; ® W+ v2 ®w i tak dalej (druga konstrukcja).
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Definicja 34. Tensor t € V; ® ... ® V,, nazywamy prostym, jesli istnieja v; € V; takie, ze t =
V1 Q... Unp.

Ranga tensora t to najmniejsza liczba rk (¢) € N taka, ze t jest sumg rk (¢) tensoréw prostych.

Przyktad. Odwzorowanie m : My xn X Muxn 3 (A, B) — AB € M, x, jest dwuliniowe, a wiec
istnieje odpowiadajacy mu tensor. Range tego tensora mozna powiazac z liczbg mnozen potrzebnych
do wymnozenia tych macierzy. Ograniczenia na nia wiaza sie wiec z tym, jak szybko jestesmy w
stanie mnozy¢ macierze.

7. Formy wieloliniowe
2025-12-12

Definicja 35. Méwimy, ze forma k-liniowa f : V¥ — K jest:
e symetryczna, jesli f (vi,...,v5) = f (vg(l), . ,vc,(k)) dla kazdego o € Si.
e antysymetryczna, jesli f (vy,...,vx) =sgn (o) f (vg(l)7 e ,vg(k)) dla kazdego o € Si.
e alternujaca, jesli f (vy,...,v;) = 0 gdy tylko v; = v; dla pewnych i # j.

Propozycja 13. Jesli forma k-liniowa jest alternujaca, to jest antysymetryczna. Jesli char K # 2, to
forma antysymetryczna jest alternujaca.

Dowé6d. Mamy

0:f(?)l,...,ﬂi+Ui+1,’l}i+vi+1,...,7)k) :f(vl,...,i)i7’l}i,...7’l)k)+f(’Ul,...,’Ui+1,7}i+17...,’l)k)
+f(vlv"',viavi+1;"'avk)+f(vla"',vi—i-lvv’ia"'avk)
:f(’Ul,...,’Ui,UZ‘,...,’Uk)—|—f(’Ul,...,’Uz'+1,1}i+1,...7’0k)7

co daje jedna strone tezy dla transpozycji sasiednich elementéw, a wiec dla wszystkich permutacji.
Przy i < j z antysymetrycznosci f (v1,..., V..., Vj, .5 0%) = —f (U1, ..., 0, ., U4y ..., V), WieC
dla v; = v; i przy char K # 2 obie strony sg réwne 0.

O

Definicja 36. Potega symetryczna S*V to taka przestrzen wraz k-liniowym odwzorowaniem syme-
trycznym II : V*F — S*V| e dla kazdej symetrycznej formy k-liniowej f istnieje jedyne odwzoro-
wanie liniowe ¥ : S¥V — K takie, ze ponizszy diagram jest przemienny.

vk 1 Lk

7
II e
|

Skv

Definicja 37. Potega zewnetrzna /\k V' to taka przestrzen wraz z k-liniowym odwzorowaniem alter-
nujacym II : VF — /\k V', ze dla kazdej alternujacej formy k-liniowej f istnieje jedyne odwzorowanie
liniowe W : /\k V — K takie, ze ponizszy diagram jest przemienny.

vk T K

o
II e
|

NV

Notacja. Przez V®* mamy na mysli przestrzen V ®...Q V.
—_———

k razy

Twierdzenie 17. Potega symetryczna S*V i potega zewnetrzna /\lC V istnieja.
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Dowéd. Niech I* = span {U1 ®...0Uk —VUg(1) ® ... ®Us(r) : Vici) Vi €V,0 € Sk}. Pokazemy, ze
przestrzen V®k/]k jest odpowiednia potega symetryczng. Niech f : V¥ — K bedzie symetrycznym
odwzorowaniem ks—liniowym. Istnieje jedyne odwzorowanie liniowe ¥ : V®F — K takie, ze f = Woll.
Zauwazmy, ze jest ono symetryczne (symetria f daje symetrie ¥ na bazie, wiec U jest symetryczne).
Niech II bedzie ztozeniem II z rzutowaniem na rozwazang przestrzen ilorazowa. Z symetrycznosci
U odwzorowanie ¥ : V®k/1-k 3 [v] = ¥ (v) jest poprawnie okreslone. Jest to jedyny sposob na
okreslenie odwzorowania speiniajadcego = To ﬁ, zatem dowdd jest zakonczony.

v LK

U
e |

I L
_ l e
!

-

vek /
/o~
J/ /// ‘p

®k i
\% i
S
Dla potegi zewnetrznej identyczny argument korzysta z wydzielenia przez przestrzen
I!f = span {v1 ®...Q g : Voek Ve €V, 3y jelr)itg Vi = vj} .

O

Uwaga. Korzystajac z konstrukeji produktu tensorowego przez przestrzen odwzorowan k-liniowych
mozemy tez uzyskaé

k _ Link (‘/, K)* . *
StV = /Span {f € Liny (V, K) : V<p symetryczne f (90) = 0},

*

kyr _ Ling (V,K) . )
/\ V= /span {f € Ling (V,K)" : Yy, alternujace f () = O}‘

Notacja. Dla elementu [v; ® ... ® v},] € S¥V stosujemy notacje vy - ... - vg.

Dla elementu [v; ® ... @ vg] € /\k V stosujemy notacje vy A ... A vg.

Lemat 8. Niech v; € V. Zachodzi v1 A ... Avg =0 < wv1,..., v sa liniowo zalezne.

Dowdd. ( =) Zalézmy, ze vq, ..., vy sa liniowo niezalezne i uzupelnijmy je do bazy elementami
Vg1, - - -, Up. Utozsamiajac (v1 A ... Avg) A (vgt1 A ... Avy,) z funkcjonatem na przestrzeni odwzo-
rowan n-liniowych widzimy, ze nie zeruje sie on na wyznaczniku, bo det (vy, . ..,v,) # 0. Wyznacznik
jest antysymetryczny, wiec rozwazany funkcjonal jest niezerowy (nawet w przestrzeni ilorazowej).
W szczeg6lnodci v A ... A vy jest niezerowy.

() Jeslivg = 3,0 a:v;, to

le.../\WA...Avk:le.../\ZaiviA...Auk:Zai(le...Avm.../\vk):0.
i20 i

Propozycja 14. Niech {ey,...,e,} bedzie baza V. Baza przestrzeni /\IC V jest zbior

{eil/\.../\eik:1§i1<...<ik§n}.

Dowéd. Mamy e; A e; = —e; Ae; (wynika z rozpisania 0 = (e; +€;) A (e; +¢€;)). Dlae;, A... Ae;,
istnieje takie o € Sk, Ze iy(1) < ... igr). Wtedy i, A. .. A€, = sgn (o) e, A...Aei, . Co wigce]
mozna zatozy¢, ze nier6wnosci sg ostre, bo inaczej rozwazany element sie zeruje. Zatem rozwazany
zbiér generuje /\]C V' (bo elementy postaci e;, A ... A e;, sa obrazem bazy produktu tensorowego w
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rzutowaniu na odpowiednia przestrzen ilorazowa,).

Zalozmy, ze Zl<i1<...<ik<n Qi ..i €, N .. Neg, = 0. Ustalmy jeden element e;; A...Aej, i ponume-
rujmy pozostale elementy rozwazanej bazy V tak, by miala ona postac {ejl, 2009 @0 Spnng 000 9 Bl }
Wtedy domnazajac przez e;, ., A...Ae;, mamy

0= E iy .. ige (eil /\.../\eik)/\(eij /\.../\ej”) zajlmjkejlA...AejkAejk+1Aej7L,
1<ii<...<ip<n

wiec aj, .., = 0. Wobec dowolnosci tego ciggu mamy liniows niezaleznosé. O

Propozycja 15. Niech {ey,...,e,} bedzie baza V. Baza przestrzeni S*V jest zbior

{ei; ...e;, :1<i; <...<ip<n}.

Dowéd. Mamy e;e; = eje;. Dla e;, ...e;, istnieje takie o € Sk, ze iy1) < ... < iyk). Wtedy
€iy -+ - €iy = €igyy - - - €i,q, - Latem Tozwazany zbior generuje S*V (bo elementy postaci e;, ...e;, sa
obrazem bazy produktu tensorowego w rzutowaniu na odpowiednia przestrzen ilorazowa).

Zalormy, ze Y, o i @iy iy - - €i,, = 0. Utozsamiamy 0 z F' € (Lin, (V,K))” takim, ze F () = 0
dla kazdego ¢ symetrycznego. Niech Hj, .. j, bedzie stabilizatorem dzialania Sy na ciag j; < ... < ji.

Ustalmy symetryczna funkcje k-liniowa ;. j, = ZUESVH- _ e;(f(l)_“ja(k) (bierzemy po jednym
Fl acadipy

reprezentancie z kazdej warstwy — definiowana funkcja nie zalezy od wyboru reprezentantéow, bo
elementy jednej warstwy roznia sie tylko tym, gdzie posylaja elementy ciagu o tej samej wartosci).
Dostajemy teraz 0 = F (¢j,..j,) = aj,...j,- Wobec dowolnosci ji ... jr mamy liniows niezaleznosc.
O

Whiosek. 1. A"V = {0} dla k > n.

2. NV2NT"Vda0<k<n.

3. dim S*V — +oo0.

4. S*V jest izomorficzne z przestrzenia K [z, . . . , Tp|, wielomianoéw n zmiennych stopnia k.

Dowéd. 1. Nie istnieje & elementowy $cisle rosnacy ciag o elementach z {1,...,n}.

2. Dla ciagu 1 < i1 < ... < iy < n istnieje dokladnie jeden ciag 1 <} < ... </ _, <n taki, ze

n—k —
{ir, ... ik, 4, ... i} = {1,...,n}. Posylajac e;; A...Ae; — ey N...Ney  dostajemy
izomorfizm.

3. Oczywiste.
4. Posytajac e;, ...e;, — zy, ... x;, dostajemy izomorfizm.

O

Notacja. Permutacje o € S, mozna utozsami¢ z odwzorowaniem o : V¥ — V* zadanym poprzez
o ((in R 7Uik)) = (Ua(h)a ceey Uc’(k)) .
Odpowiadajace mu odwzorowanie na tensorach o : VE* — V®* jest zadane tym samym wzorem.

Definicja 38. Tensor t € V®* jest symetryczny, jesli o (t) = t dla kazdego o € Si.
Tensor ¢ € VO jest antysymetryczny, jesli o (t) = sgn (o) t dla kazdego o € Sy,.

Definicja 39. Przy char K = 0 definiujemy symetryzacje S: V¥ 5 ¢ — Y ves, O (t) oraz antysy-
metryzacje A : VO 5 ¢ — L > oes, 5gn (o) o (t). Odwzorowanie te posylaja tensory odpowiednio
w przestrzen tensorow symetrycznych i antysymetrycznych.
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8. Algebry tensorowe 2026-01-09

Definicja 40. Mnozenie tensorow to odwzorowanie dwuliniowe my, o : VEF x V& — V2*+ zadane

przez
(N®..UVLWI Q... wy) >V ... AU QW ® ... wp.

Notacja. Dla v € V& i w € V®* piszemy v ® w = my, ¢ (v, w).

Uwaga. Mnozenie tensoréw jest zgodne ze strukturami potegi symetrycznej i zewnetrznej. Oznacza
to, ze mamy dobrze zdefiniowane operacje mnozenia S*V x SV > (t,5) — ts € S*V oraz

NV xANVo@Ets)stase NV

Definicja 41. Algebra nad K nazywamy pierscien A (w naszym przypadku z jedynka), ktory jest
przestrzenia, wektorowsa nad K. Inaczej méwiac: odwzorowanie zadane przez 1lxg — 14 jest mono-
morfizmem.

Definicja 42. Niech V bedzie przestrzenia wektorowa. Przestrzenie

o0

TV = P ver,
k=0

SV =P sy,
k=0

o0
AV=BNV
k=0
nazywamy odpowiednio algebra tensorowa, algebra symetryczng oraz algebra zewnetrzng.

Uwaga. Mamy dim A V < oo, bo A*V = {0} dla k > dim V. Przestrzenie TV i SV sa nieskoticzo-
nego wymiaru.

Uwaga. Mnozenie tensorow jest taczne, co wynika z naturalnego izomorfizmu (AQ B) @ C ~ A ®
(B® (). Z tego od razu mamy, ze wprowadzone przestrzenie sa algebrami (pozostale aksjomaty
tatwo widacd).

Uwaga. Z definicji potegi symetrycznej i zewnetrznej istnieja epimorfizmy 7% : V®* — SFV oraz
7k vek /\k V. Sumuja sie one do epimorfizmow 75 : TV — SV im, : TV = AV.

Twierdzenie 18. Jadrem epimorfizmu 7, : TV — SV jest ideal (dwustronny) I, C TV generowany
przez elementy postaci v ® w — w ® v, gdzie v,w € V.

Dowéd. Mamy v @ w —w ® v € kerwf C ker g, wiec Iy C ker 7y.

Niech o, 7 € Si. Jezeli dla dowolnego t € V®* mamy t — o (t),t — 7 (t) € I, to mamy
t—(too)(t)=t—7(c(@)=@t—0(@)+(c(t)—7(c(t)) € Ls.

Zatem wystarczy wykazaé teze dla o bedacego transpozycja sasiednich elementéw i i ¢ + 1. Niech
=0 ®U QUi+ @ ... vk Mamy v; ® viy1 — viy1 @ v; € I;. Domnazajac z lewej strony przez
V1 ®...QU;—1 az prawej przez vi42 Q. ..y dostajemy t —o (t) € Is. Z tego wynika, ze ker g C I,
a wiec mamy teze. O

Twierdzenie 19. Jadrem epimorfizmu 7, : TV — AV jest ideal (dwustronny) I, C TV generowany
przez elementy postaci v ® v, gdzie v € V.

Dowéd. Mamy v®uv € ker 7T2 C ker m,, wiec I, C ker 7,. Pozostaje pokazaé¢, ze v1 ®...®uy € I, gdy
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v; = V45 dla pewnych ¢, j. I, jest idealem dwustronnym, wigc wystarczy pokazaé v;®...®Qvi4; € Iq.
Dla j = 1 teze mamy natychmiast. Niech j > 11iv = v; = v;4j, w = v34;_1. Mamy

I,2v..0 v+ w)® (v+w) =
(W®...vRV)+ (V.. URW) +(VR®..VRW)+ (VR ... QWA V).

Pierwszy i drugi czynnik naleza do I z definicji, a trzeci z zalozenia indukcyjnego. Zatem czwarty
rowniez nalezy do I, co koriczy dowod kroku indukcyjnego. O

Whiosek. Zachodzi SV =TV 7 i AV =TV 7 .

Twierdzenie 20. Niech V' bedzie przestrzenia wektorows nad K a A algebra nad K. Niech ¢ : V —
TV bedzie inkluzja. Dla dowolnego homomorfizmu przestrzeni wektorowych f : V. — A istnieje
dokladnie jeden homomorfizm algebr F' (f) = F : TV — A taki, ze Fo.= f.

Dowéd. Definiujemy szukany homomorfizm na tensorach prostych: dla v; ®...®v € V®F ustalamy
Fy®...Q0uv;) = f(v1)...f(vn). Do tego F (1) = 1. To odwzorowanie oczywiscie spelnia zadane
wlasnosci, a konieczna réwnosé F (v) = f(v) dla v € V®! implikuje, Ze odwzorowanie to jest
jedyne. O

Whiosek. Niech V, W beda przestrzeniami wektorowymi nad K. Homomorfizm f : V' — W indukuje
homomorfizm T'f : TV — TW. WskazaliSmy wiec funktor T'e : Vect — Alg.

Dowéd. Niech f: tof:V = TW, gdzie v : W — TW jest inkluzja. Szukanym homomorfizmem
jestTf:F(f). 0

Twierdzenie 21. Niech V bedzie przestrzenia wektorowa nad K a A algebra nad K. Niech ¢ : V — SV
bedzie inkluzjg. Dla dowolnego homomorfizmu przestrzeni wektorowych f : V. — A takiego, ze
f () f(w) = f(w) f(v) istnieje doktadnie jeden homomorfizm algebr F' (f) = F : SV — A taki, ze
Foir=f.

Dowéd. Wiemy, ze istnieje odpowiednie odwzorowanie F:TV — A, a z zalozenia faktoryzuje sie
ono przez iloraz. O

Uwaga. Niech ComAlg bedzie kategoria algebr przemiennych. Mamy SV € ComAlg. Z tego twier-
dzenia wynika, ze jesli A jest algebra przemienng, to odwzorowanie liniowe f : V — A rozszerza sie
do morfizmu algebr przemiennych F : SV — A.

Twierdzenie 22. Niech V' bedzie przestrzenig wektorowa nad K a A algebrg nad K. Niech ¢ : V —
AV bedzie inkluzja. Dla dowolnego homomorfizmu przestrzeni wektorowych f : V' — A takiego, ze
f (v)2 = 0 istnieje doktadnie jeden homomorfizm algebr F' (f) = F : AV — A taki, ze F o= f.

Dowéd. Wiemy, ze istnieje odpowiednie odwzorowanie F:TV = A, a z zalozenia faktoryzuje sie
ono przez iloraz. O

I Uwaga. Wskazalismy pewne funktory Se : Vect — Alg i A o : Vect — Alg.

Definicja 43. Algebra z gradacja R to algebra wraz z rozkladem na sume prosta R = @i, R;
taka, ze {R;},.y sa takimi algebrami, ze R; + R; C R; oraz Ry, Ry, C Ry, 1. Zazwyczaj zakladamy
Ry = K (inkluzja K C Ry wynika z definicji). Dla r € R przez degr € N oznaczamy liczbe taka, ze
re Rdcgr~

Algebre z gradacja R nazywamy przemienng z doktadnoscia do gradacji (graded-commutative), gdy
q degr-deg s
zachodzi rs = (—1) srdlar,seR.

I Uwaga. Algebry TV, SV i AV maja naturalne struktury algebr z gradacja.
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Twierdzenie 23. Algebra z gradacja AV jest przemienna z doktadnoscia do gradacji.

Dowéd. Wezmy elementy proste o =vi A ... Avp i 8 =wi A... Nwy. Mamy

aANB=viA...ANvpAwL A Awg = (1P wi Avi Ao Avp Awe AL Awg =
=...=DMw A Awg A AL A, = (DB A«

gdzie réwnosci wynikaja z wielokrotnego zastosowania réwnosci v A w = —w A v. O

9. Geometria 2026-01-16

Definicja 44. Przestrzenia afiniczng nazywamy pare (A7 Z), gdzie A jest zbiorem a X jest prze-

strzenia wektorowa z dziataniem A > a - a+v € Adlav € Z a do tego dla kazdego a € A
odwzorowanie A 5> v — a + v € A jest bijekcja.

Notacja. Przestrzen afiniczng wymiaru n nad K (wyznaczona z doktadnoscia do izomorfizmu) ozna-
czamy Ag.

n+1
K+ \{()}/N7 gdzie v ~ w <= Tnex+ v = Iw.

Definicja 45. Przestrzen rzutowa P} to zbior

Twierdzenie 24. P} parametryzuje proste w K", to znaczy istnieje naturalna bijekcja miedzy
tymi zbiorami.

Dowéd. Odwzorowanie P 5 [v] — K - v jest surjekcja, a jesli K-v =K - w, to v ~ w. O

Notacja (Wspétrzedne rzutowe). Punkt [v] € PR mozemy rozpatrzeé w bazie K" i zapisaé¢ jako
[Vo : w1 i ... wy], gdzie [vg i ... i vp] = [Mvg i ... Avy] dla A € K*.

Twierdzenie 25. Zachodzi P = AR UPR ™' = AR LI... UAS.
Dowéd. Wystarczy udowodnié pierwszg rownosé, druga wynika z indukcji.

Dokonujemy podziatu P = {[vg:...:v,] €PE v, =0} U {{vo:...:vy] € PE:v, #0}. Plerw-
szy zbior jest izomorficzny z ]P’]}yl7 bo mozemy zignorowaé¢ ostatnia wspotrzedna. Mozemy ustalié
skalowania elementéw drugiego zbioru tak, by ich ostatnia wspoélrzedna wynosita 1. Wtedy mo-
zemy je traktowaé jak n-krotki elementow K (nie zwazajac na relacje rownowaznosci, bo ustalamy
reprezentanta, dla ktorego ostatnia wspotrzedna to 1). Takie krotki maja naturalna strukture prze-
strzeni afinicznej Ag, gdzie dodawania wektoréw polega na dodaniu do siebie kolejnych elementéw
w krotce. O

Twierdzenie 26. Niech K € {R,C}. Wtedy przestrzeni P§ z topologia ilorazowa jest zwarta.

Dowéd. Dla kazdego v € K"*!\ {0} istnieje v € K" takie, ze [v] = [0] i ||7]] = 1. Zatem
rzutowanie S” € v — [v] € P jest ciagly surjekcja. Poniewaz S™ jest zwarta, to PR jest zwarta jako
obraz przestrzeni zwartej w funkcji ciagle;j. O

Przykfad. Ptaszczyzng Fano nazywamy przestrzen rzutowa ]P’IQFQ. Wyglada ona jak na rysunku poni-
Z€j.
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Definicja 46. Zbiorem miejsc zerowych wielomianu f € K[Ty,...,T,] w przestrzeni rzutowej na-
zywamy zbior {x € A" : f (z1,...,2,) = 0}. Oznaczamy go zazwyczaj V (f). Zauwazmy, ze usta-
lenie srodka uktadu wspolrzednych a € A™ zadaje izomorfizm A™ ~ K", wiec ma sens zapis
x=(21,...,%n).

Zbiory algebraiczne to zbiory postaci V (f1,..., fx) = {z € A" : Viepy fi (@1,...,20) = 0}.

Dla g € (f1,..., fr) (ideal generowany przez wielomiany) mamy g (z) = 0dla z € V (f1,..., fr).

Dla ideatu I C K [T7,...,T,] definiujemy V (I) = {z € A" : Vsc; f (z) = 0}. Zkolei V C A" zadaje
ideat I (V) = {f € K[T1, ..., Tn] : Vaev f (z) = O}

Pomyst. Geometria algebraiczna bada zbiory algebraiczne poprzez badanie idealéw przez nie gene-
rowanych.

Przykfad. Wielomian 22 4 y? — 1 definiuje zbior {m € A" : 22 + 22 = 1}7 ktory nad R jest okregiem.

Definicja 47. Zbior algebraiczny, ktérego nie mozna zapisaé¢ jako (nietrywialna) sume zbiorow al-
gebraicznych nazywamy rozmaitoscia algebraiczna. Rozmaitosci algebraiczne moga by¢ rozmaito-
Sciami topologicznymi (nazywamy je wtedy nieosobliwymi), ale nie musza.

Definicja 48. Wielomian f (Tp,...,T,) nazywamy jednorodnym, jesli jest postaci f (Tp,...,Tn) =

ao a
ag,...,0n O‘ao,m,anTo Tn"
ao+...+an=d

Propozycja 16. Dla wielomianu jednorodnego f mamy f (A\Tp, ..., \Ty,) = A% f (To, ..., T,). Zatem
f(\To, ..., \T,,)) =0 << [ (Tp,...,Tn,) =0.

Definicja 49. Zbiér algebraiczny w P" to zbior postaci {z € P™ : V,ep fi (wo,...,2n) = 0}, gdzie
fi,--., fr sa wielomianami jednorodnymi.

Definicja 50. Pierscien K [Ty, ...,T,] = @K [T, ..., T,],; ma naturalng strukture pierscienia
z gradacja. Ideatl I C K|[Ty,...,T,] nazywamy jednorodnym, gdy dla kazdego Zﬁlv:o fa=f¢el
mamy fq € I dla wszystkich d.

Uwaga. Mamy zanurzenie A" — P" zadane przez (z1,...,2,) = [l : 21 : ... : z,]. Przeksztalca ono
zbior algebraiczny V' zadany wielomianem f na zbior algebraiczny powstaly z f poprzez domnozenie
sktadnikéw f przez nowa zmienna z( tak, by wynikowy wielomian byt jednorodny.

Przykfad. Okrag 22 + 32 = 1 w A? ma odpowiadajacy sobie zbior 22 + y? = 22 w P2. Mozemy
ograniczy¢ ten zbior do A% < P? zadanego przez y = 1. Otrzymujemy 2 + 1 = 22. Ten zbior jest
hiperbola. Zatem zaleznie od rozwazanej podprzestrzeni ten sam zbiér moze wygladaé réznie.

Definicja 51. Niech V bedzie przestrzenia wektorowa o wymiarze n. Rodzine
Gr(n,k)={L<V:dimL =k}

nazywamy grassmanianem.

Uwaga. Chcemy w jakis sposob sparametryzowaé Gr (n, k). Dla k = 1 odpowiednia parametryzacja
jest przestrzen rzutowa.

Ustalmy L € Gr (n, k). Niech wy, ..., w, bedzie baza L. Definiujemy odwzorowanie Gr (n,k) 3 L —
[wi AL Awy] € IF’(/\kV). Zachodzi span {wq, ..., wp} =span{w},...,w,} <= wiA...ANwg =

i AL Aw), dla A € K*. Zatem to odwzorowanie jest poprawnie okreslone i jest iniekcja.

Majac zadane © = [wy A... Awg] € P (/\k V) chcemy zapisa¢ ten punkt we wspotrzednych rzu-
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towych [:rilmik R TV ] Mozemy rozwazyé¢ macierz W = |w; ... wg| o wymiarach n x k.
Okazuje sie, ze z;, .. ;, jest réwny minorowi W na wierszach i1, ..., .

W ten sposoéb mozemy tatwo znajdowaé wspotrzedne punktow ptaszczyzny rzutowej odpowiadajace
elementom grassmanianu. Tak wyznaczone wspolrzedne nazywamy wspotrzednymi Pliickera.

Twierdzenie 27 (Relacje Pliickera). Dla 1 < i3 <ip <...<ip1 <nil<ji <jo<...<jgtr1 <n

zachodzi f;rll (fl)t Tiy.oin—rje " Tjy. Grodors = 0, gdzie j; oznacza pominiecie j;, a w pierwszym
czynniku musimy przesunaé¢ j; w odpowiednie miejsce (by ciag byt rosnacy) i kazde przesuniecie o

jeden indeks zmienia znak.

I Przyktad. Dla k =2, n =4 oraz j = (1,3,4), i = 2 mamy x1 2234 + T23%1,4 — L2471,3 = 0.

Uwaga. Okazuje sig, ze zbior algebraiczny zdefiniowany przez relacje Pliickera jest doktadnie gras-
smanianem.
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