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1. Iloczyn skalarny
2025-10-03

Uwaga. Rozważamy skończenie wymiarową przestrzeń wektorową V nad ciałem K, gdzie K = R,C.

Definicja 1. Krotkę (V, ⟨·, ·⟩ : V × V → K) nazywamy przestrzenią unitarną, a ⟨·, ·⟩ nazywamy ilo-
czynem skalarnym, gdy spełnione są następujące warunki:

• liniowość ⟨αv1 + βv2, w⟩ = α ⟨v1, w⟩+ β ⟨v2, w⟩, gdzie α, β ∈ K, v1, v2, w ∈ V .

• symetria sprzężona ⟨v, w⟩ = ⟨w, v⟩, gdzie v, w ∈ V .

• dodatnia określoność ⟨v, v⟩ ≥ 0 i ⟨v, v⟩ = 0 =⇒ v = 0, gdzie v ∈ V .

Definicja 2. v, w ∈ V są prostopadłe (ortogonalne), gdy ⟨v, w⟩ = 0.

Definicja 3. Dla S ≤ V definiujemy dopełnienie ortogonalne S⊥ = {v ∈ V : ∀s∈S ⟨v, s⟩ = 0}.

Definicja 4. Mówimy, że V jest ortogonalną sumą prostą A,B (nasze oznaczenie V = A⊠B), gdy
V = A⊕B i ⟨a, b⟩ = 0 dla każdego a ∈ A, b ∈ B.

Definicja 5. Zbiór wektorów {v1, . . . , vk} nazywamy ortogonalnym, gdy ⟨vi, vj⟩ = aijδij (delta Kro-
neckera). Zbiór ortogonalny jest ortonormalny, gdy aij = 1 dla każdego i, j.

Propozycja 1. Zbiór ortogonalny jest liniowo niezależny.

Dowód. Jeśli
∑k

i=1 αivi = 0, to 0 =
∑k

i=1 αi ⟨vi, vj⟩ = αj ⟨vj , vj⟩, więc αj = 0.

Propozycja 2 (Procedura Grama-Schmidta). Każda (skończenie wymiarowa) przestrzeń ma bazę
ortogonalną.

Twierdzenie 1.
V = S ⊠ S⊥.

Dowód. S ∩ S⊥ = {0}, bo v ∈ S ∩ S⊥ =⇒ ⟨v, v⟩ = 0 =⇒ v = 0, ortogonalność S i S⊥ z definicji.

Mamy S + S⊥ = V , bo możemy zrobić rzut prostopadły na S i mamy wzór

w =

(
w −

n∑
i=1

⟨w, vi⟩
⟨vi, vi⟩

vi

)
+

n∑
i=1

⟨w, vi⟩
⟨vi, vi⟩

vi.

To korzysta z wyboru bazy i skończonego wymiaru.

Uwaga. Dla ustalonego v ∈ V odwzorowanie V ∋ w → φv (w) = ⟨w, v⟩ ∈ K jest odwzorowaniem
liniowym.

Twierdzenie 2 (Riesza o reprezentacji). Odwzorowanie V ∋ v → φv ∈ V ∗ jest surjekcją.

Dowód. Dla funkcjonału φ ∈ V ∗ chcemy znaleźć v ∈ V takie, że φ (w) = ⟨w, v⟩. Dla zerowego
funkcjonału można wziąć wektor zerowy. Dla niezerowego dimkerφ = n− 1, więc V = ⟨w⟩⊠ kerφ

dla pewnego w ∈ V . Ustalamy v = φ(w)
⟨w,w⟩w i działa, bo zeruje się na jądrze i ma odpowiednią wartość

na w.

Wniosek. Dla L ∈ Lin (V, V ) istnieje takie L∗ ∈ Lin (V, V ), że ⟨Lv,w⟩ = ⟨v, L∗w⟩.
Dowód. Mamy φw (v) = ⟨Lv,w⟩. Z twierdzenia Riesza jest φw (v) = ⟨v, vφw⟩. Możemy ustalić L∗ :
V ∋ w → vφw ∈ V . Z liniowości iloczynu skalarnego wynika liniowość takiego przekształcenia.

Definicja 6. A ∈ Lin (V, V ) jest operatorem:

1. normalnym, gdy AA∗ = A∗A.
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2. hermitowskim, gdy A = A∗.

3. unitarnym, gdy AA∗ = A∗A = id.

Operatory unitarne lub hermitowskie są normalne.

Uwaga. Odwzorowania unitarne są izometriami, bo ⟨Av,Aw⟩ = ⟨v,A∗Aw⟩ = ⟨v, w⟩.

Twierdzenie 3 (Spektralne). A ∈ Lin (V, V ) jest operatorem normalnym wtedy i tylko wtedy, gdy
istnieje baza ortonormalna e1, . . . , en taka, że Aei = λiei, gdzie λi ∈ C.

Przy założeniu normalności A jest hermitowski wtedy i tylko wtedy, gdy λi ∈ R, a unitarny wtedy
i tylko wtedy, gdy |λi| = 1.

2. Formy dwuliniowe
2025-10-10

Uwaga. Dalej będziemy rozważać przestrzenie wektorowe nad dowolnym ciałem K.

Definicja 7. Forma dwuliniowa to funkcja ⟨·, ·⟩ : V × V → K taka, że dla ustalonego v ∈ V funkcje
⟨·, v⟩ i ⟨v, ·⟩ są liniowe.

Propozycja 3. Dla każdej formy dwuliniowej na n-wymiarowej przestrzeni wektorowej i ustalonej
bazy B istnieje dokładnie jedna macierz MB ∈ Kn×n taka, że ⟨v, w⟩ = vTBMBwB . Podobnie dowolna
macierz M ∈ Kn×n zadaje formę dwuliniową ⟨v, w⟩M = vTBMwB .

Dowód. Niech B = {e1, . . . , en}. Mamy eTi MBej = (MB)ij , więc musi być MB = [⟨ei, ej⟩]ij . Dla
v =

∑n
i=1 viei i w =

∑n
i=1 wiei mamy

⟨v, w⟩ =
n∑

i=1

n∑
j=1

viwj ⟨ei, ej⟩ = vTMBw.

Uwaga. W przypadku skończenie wymiarowym dla zadanej bazy B możemy utożsamić formę dwu-
liniową z odpowiadającą jej macierzą MB .

Propozycja 4. Niech MB1
i MB2

będą macierzami pewnej formy dwuliniowej odpowiednio w bazach
B1 i B2. Zachodzi MB1

= QTMB2
Q, gdzie Q jest odpowiednią macierzą przejścia.

Dowód. vTB2
MB2

wB2
= (QvB1

)
T
MB2

QwB1
= vTB1

QTMB2
QwB1

.

Definicja 8. Macierze A i B nazywamy kongruentnymi, jeśli istnieje taka odwracalna macierz Q, że
A = QTBQ. Piszemy wtedy A ≡ B.

Definicja 9. Wyróżnik (dyskryminant) formy dwuliniowej ⟨·, ·⟩ to wartość

desc ⟨·, ·⟩ = [detMB ] ∈ K⧸K∗2

będąca klasą równoważności wyznacznika macierzy z dokładnością do mnożenia przez kwadrat ele-
mentu ciała.

Dla różnych baz B1, B2 mamy detMB1
= detQT detMB2

detQ = det (Q)
2
detMB2

, zatem wyróżnik
jest dobrze określony.

Definicja 10. Funkcję τ : V → W między przestrzeniami z zadanymi formami dwuliniowymi na-
zywamy izometrią, jeśli jest bijekcją i ⟨τv1, τv2⟩W = ⟨v1, v2⟩V . Przestrzenie nazywamy izometrycz-
nymi, jeśli istnieje między nimi izometria.
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Definicja 11. Dla zadanej formy dwuliniowej i elementów x, y ∈ V mówimy, że x jest prostopadłe
do y (x ⊥ y), jeśli ⟨x, y⟩ = 0.

Uwaga. Powyższa relacja nie jest symetryczna, w przeciwieństwie do ortogonalności nad iloczynem
skalarnym.

Definicja 12. Niech x ∈ V \ {0}. Wektor x jest izotropowy, jeśli ⟨x, x⟩ = 0 (czyli x ⊥ x).

Definicja 13. Niech S ≤ V . Definiujemy przestrzeń ortogonalną

S⊥ = {v ∈ V : ∀s∈S ⟨s, v⟩ = 0} .

Definicja 14. Radykałem przestrzeni V nazywamy przestrzeń rad (V ) = V ⊥. Radykałem podprze-
strzeni S ≤ V nazywamy jej podprzestrzeń rad (S) = S⊥ ∩ S.

Uwaga. Forma dwuliniowa nie musi być symetryczna, można więc rozróżniać prawe i lewe prze-
strzenie ortogonalne oraz radykały:

S⊥ = {v ∈ V : ∀s∈S ⟨s, v⟩ = 0} , rad⊥ (S) = S⊥ ∩ S
⊥S = {v ∈ V : ∀s∈S ⟨v, s⟩ = 0} , ⊥ rad (S) = ⊥S ∩ S.

W naszej definicji skupiamy się na tych prawych.

Definicja 15. Przestrzeń V z formą dwuliniową nazywamy nieosobliwą, jeśli rad (V ) = {0}. Prze-
strzeń nazywamy osobliwą lub zdegenerowaną, jeśli nie jest nieosobliwa. Przestrzeń jest całkowicie
zdegenerowana, jeśli rad (V ) = V . Te same określenia stosujemy również do formy dwuliniowej,
którą rozważamy.

Propozycja 5. 1. Przestrzeń jest całkowicie zdegenerowana wtedy i tylko wtedy, gdy MB = 0.

2. Przestrzeń jest zdegenerowana wtedy i tylko wtedy, gdy detMB = 0.

Dowód. Dla zerowej formy dwuliniowej MB = 0 przestrzeń jest całkowicie zdegenerowana, nato-
miast jeśli (MB)ij = λ ̸= 0, to eTi MBej = λ i ej /∈ rad (V ).

Jeśli mamy detMB = 0, to istnieje x ∈ V \ {0} taki, że MBx = 0. Zatem yTMBx = 0 i x ∈ rad (V ).
W drugą stronę yTMBx = 0 dla każdego y implikuje MBx = 0, czyli detMB = 0.

Definicja 16. Mówimy, że V jest ortogonalną sumą prostą podprzestrzeni A i B (V = A⊠B), jeśli
V = A⊕B oraz ∀a∈A,b∈B a ⊥ b, b ⊥ a.

Twierdzenie 4. Niech W = ⊥ rad (V ) ∩ rad⊥ (V ). Istnieje taka przestrzeń S ≤ V , że V = W ⊠ S
oraz ⊥ rad (S) ∩ rad⊥ (S) = {0}.
Dowód. Dopełniając bazę W do bazy V dostajemy przestrzeń S taką, że V = W⊕S. Dla wszystkich
wektorów s ∈ S,w ∈ W mamy ⟨s, w⟩ = ⟨w, s⟩ = 0, więc V = W ⊠ S.

Ustalmy s ∈ ⊥ rad (S)∩ rad⊥ (S). Dla dowolnego v ∈ V jest v = w+ s′ dla pewnych w ∈ W, s′ ∈ S,
więc ⟨v, s⟩ = ⟨w, s⟩ + ⟨s′, s⟩ = 0 i analogicznie ⟨s, v⟩ = 0. Zatem s ∈ W , czyli s = 0. To kończy
dowód.

Twierdzenie 5 (Riesz). Niech V będzie nieosobliwą przestrzenią z formą dwuliniową. Odwzorowanie
V ∋ v → ⟨·, v⟩ ∈ V ∗ jest iniekcją, a więc izomorfizmem dla skończenie wymiarowych przestrzeni.

Dowód. Jeśli mamy ⟨·, v⟩ ≡ 0 dla pewnego v, to ∀w∈V ⟨w, v⟩ = 0, czyli v ∈ rad (V ), więc v = 0 z
nieosobliwości. Zatem jądro odwzorowania jest trywialne.

Wniosek. Jeśli S ≤ V i S lub V jest nieosobliwa, to ∀f∈S∗ ∃v∈V f (s) = ⟨s, v⟩ dla każdego s ∈ S.
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Dowód. Dla nieosobliwego S teza wynika z twierdzenia Riesza. Dla nieosobliwego V możemy roz-
szerzyć dowolne f ∈ S∗ do funkcjonału na V (definiując wartości na elementach bazy V ), skorzystać
z twierdzenia Riesza i zacieśnić odwzorowanie do S.

Uwaga. Dalej zakładamy, że relacja ⊥ jest symetryczna.

Propozycja 6. Niech V będzie nieosobliwą przestrzenią wektorową, S ≤ V , dimV < ∞ i załóżmy,
że relacja ⊥ jest symetryczna. Zachodzi:

1. dimS + dimS⊥ = dimV .

2.
(
S⊥)⊥ = S.

3. rad (S) = rad
(
S⊥).

4. S jest nieosobliwa ⇐⇒ S⊥ jest nieosobliwa.

Dowód. 1. Z twierdzenia Riesza φ : V ∋ v → ⟨·, v⟩ ∈ S∗ jest surjekcją. Równość dim imφ +
dimkerφ = dimV daje nam tezę.

2. Mamy dimS + dimS⊥ = dimV = dimS⊥ + dim
(
S⊥)⊥, ale S ⊆

(
S⊥)⊥, więc z równości ich

(skończonych) wymiarów mamy S =
(
S⊥)⊥.

3. rad (S) = S ∩ S⊥ =
(
S⊥)⊥ ∩ S⊥ = rad

(
S⊥).

4. Natychmiast wynika z poprzedniego.

Twierdzenie 6. Niech V będzie przestrzenią wektorową, S ≤ V , dimV < ∞ i załóżmy, że relacja ⊥
jest symetryczna. Następujące warunki są równoważne:

1. V = S ⊠ S⊥

2. V = S ⊕ S⊥.

3. S ∩ S⊥ = {0}.

4. S jest nieosobliwa.

Dowód. Definicje sumy ortogonalnej i przestrzeni ortogonalnej natychmiast dają nam (1 ⇐⇒ 2)
oraz (1 =⇒ 3). Równoważność (3 ⇐⇒ 4) wynika z definicji nieosobliwości.

(3 =⇒ 2) Dla odwzorowania φ : V ∋ v → ⟨·, v⟩ ∈ S∗ mamy

dimV = dimkerφ+ dim imφ = dimS⊥ + dim imφ ≤ dimS⊥ + dimS.

Z drugiej strony mamy

dimV ≥ dim
(
S + S⊥) = dimS + dimS⊥ − dim

(
S ∩ S⊥) = dimS + dimS⊥.

Zatem dimV = dimS + dimS⊥ = dim
(
S + S⊥), więc ze skończoności wymiaru V = S + S⊥.

3. Klasyfikacja form dwuliniowych
2025-10-17

Definicja 17. Formę dwuliniową ⟨·, ·⟩ nazywamy

• symetryczną, jeśli ⟨x, y⟩ = ⟨y, x⟩.

• antysymetryczną, jeśli ⟨x, y⟩ = −⟨y, x⟩.

• alternującą, jeśli ⟨x, x⟩ = 0.

Uwaga. Forma dwuliniowa jest (anty)symetryczna wtedy i tylko wtedy, gdy jej macierz również
jest (anty)symetryczna. Forma dwuliniowa jest alternująca wtedy i tylko wtedy, gdy jej macierz jest
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antysymetryczna i ma zera na przekątnej.

Propozycja 7. Jeśli charK ̸= 2, to forma dwuliniowa jest alternująca wtedy i tylko wtedy, gdy
jest antysymetryczna. Jeśli charK = 2, to jeśli forma jest alternująca, to jest antysymetryczna.
Dodatkowo antysymetryczność jest równoważna symetryczności.

Dowód. ( =⇒ ) Mamy 0 = ⟨x+ y, x+ y⟩ = ⟨x, x⟩ + ⟨x, y⟩ + ⟨y, x⟩ + ⟨y, y⟩ = ⟨x, y⟩ + ⟨y, x⟩, więc
⟨x, y⟩ = −⟨x, y⟩. Działa to przy charakterystyce 2, w której dodatkowo mamy −1 = 1, więc
−⟨x, y⟩ = ⟨x, y⟩.

( ⇐= ) Mamy ⟨x, x⟩ = −⟨x, x⟩, czyli 2 ⟨x, x⟩ = 0, a więc ⟨x, x⟩ = 0, o ile charK ̸= 2.

Twierdzenie 7. Dla charK ̸= 2 każda forma dwuliniowa jest sumą formy symetrycznej i alternującej
(antysymetrycznej).

Dowód. Dla zadanej formy ⟨·, ·⟩ definiujemy ⟨x, y⟩s =
⟨x,y⟩+⟨y,x⟩

2 oraz ⟨x, y⟩a = ⟨x,y⟩−⟨y,x⟩
2 . Te formy

spełniają odpowiednie własności i sumują się do zadanej formy.

Uwaga. Powyższe twierdzenie można wypowiedzieć w następujący sposób: przestrzeń form dwuli-
niowych jest sumą algebraiczną (a nawet prostą) przestrzeni form symetrycznych i antysymetrycz-
nych.

Twierdzenie 8. Niech ⟨·, ·⟩ będzie formą dwuliniową na przestrzeni V . Relacja prostopadłości ⊥
związana z ⟨·, ·⟩ jest symetryczna wtedy i tylko wtedy, gdy forma jest symetryczna lub alternująca.

Dowód. ( =⇒ ) Oznaczmy Z (V ) = {v ∈ V : ∀w∈V ⟨v, w⟩ = ⟨w, v⟩}. Łatwo sprawdzić, że jest to
podprzestrzeń V . Jeśli mamy ⟨x0, x0⟩ ̸= 0 dla pewnego x0, to dla dowolnego v ∈ V możemy
zdefiniować w = ⟨x0, v⟩x0 − ⟨x0, x0⟩ v i policzyć

⟨x0, w⟩ = ⟨x0, v⟩ ⟨x0, x0⟩ − ⟨x0, x0⟩ ⟨x0, v⟩ = 0.

Zatem x0 ⊥ w, czyli 0 = ⟨w, x0⟩ = ⟨x0, v⟩ ⟨x0, x0⟩ − ⟨x0, x0⟩ ⟨v, x0⟩, więc ⟨v, x0⟩ = ⟨x0, v⟩. Z tego
wynika x0 ∈ Z (V ). Załóżmy, że forma nie jest alternująca i ustalmy x0 spełniające ⟨x0, x0⟩ ≠ 0. Dla
dowolnego v ∈ V znajdziemy takie α ∈ K∗, że x0 + αv ∈ Z (V ). Wtedy dostaniemy v ∈ Z (V ), bo
Z (V ) jest przestrzenią wektorową. Możemy założyć, że ⟨v, v⟩ = 0 (bo inaczej v ∈ Z (V )) i przeliczyć

⟨x0 + αv, x0 + αv⟩ = ⟨x0, x0⟩+ α ⟨x0, v⟩+ α ⟨v, x0⟩+ α2 ⟨v, v⟩ = ⟨x0, x0⟩+ 2α ⟨x0, v⟩ .

Dla charK = 2 lub ⟨x0, v⟩ = 0 ta wartość wynosi ⟨x0, x0⟩ ≠ 0. Inaczej można ustalić α =

2−1 ⟨x0, v⟩−1 ⟨x0, x0⟩ – wtedy wynosi ona 2 ⟨x0, x0⟩ ≠ 0. W obu przypadkach mamy tezę, a więc
Z (V ) = V i forma jest symetryczna.

( ⇐= ) Symetryczna forma oczywiście zadaje symetryczną prostopadłość. Alternująca norma jest
antysymetryczna, a więc ⟨x, y⟩ = 0 implikuje ⟨y, x⟩ = −0 = 0.

Propozycja 8. 1. Baza ortogonalna istnieje wtedy i tylko wtedy, gdy V = ⊠dimV
i=1 ⟨vi⟩ dla pew-

nych wektorów vi.

2. Forma alternująca ma bazę ortogonalną wtedy i tylko wtedy, gdy ⟨·, ·⟩ ≡ 0.

3. Dla charK ̸= 2 każda forma alternująca i symetryczna jest stale równa 0.

Definicja 18. Płaszczyzną hiperboliczną nazywamy dowolną przestrzeń span {e1, e2}, gdzie e1, e2 są
takimi wektorami, że ⟨e1, e1⟩ = ⟨e2, e2⟩ = 0 oraz ⟨e1, e2⟩ = 1. Parę wektorów rozpinających płasz-
czyznę hiperboliczną nazywamy parą hiperboliczną. Przy ustalonej wartości ⟨e2, e1⟩ (na przykład
przy założeniu symetryczności lub alternującości) widzimy, że każde dwie płaszczyzny hiperboliczne
są izometryczne.

Definicja 19. Nieosobliwa przestrzeń wektorowa z alternującą formą dwuliniową jest nazywana prze-
strzenią symplektyczną.
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Twierdzenie 9. Niech (V, ⟨·, ·⟩) będzie nieosobliwą przestrzenią z alternującą formą dwuliniową.
Wtedy V = ⊠k

i=1Hi, gdzie Hi jest pewną alternującą płaszczyzną hiperboliczną. W szczególności
dimV = 2k.
Dowód. Dowód przeprowadzimy indukcją po wymiarze V . Dla dimV = 1 forma alternująca musi
być zerowa, więc V nie jest nieosobliwa, dla dimV = 2 ustalmy 0 ̸= v1 ∈ V , wtedy z twierdzenia
Riesza istnieje v2 ∈ V takie, że ⟨v1, v2⟩ = 1. Te wektory są liniowo niezależne, bo inaczej ⟨v1, v2⟩ =
α ⟨v1, v1⟩ = 0. Zatem V = span {v1, v2} jest płaszczyzną hiperboliczną, co kończy dowód bazy
indukcji.

Dla dimV > 2 ustalmy (podobnie jak przedtem) wektory v1, v2 ∈ V tworzące parę hiperboliczną.
Podprzestrzeń H1 = span {v1, v2} jest nieosobliwa (⟨α1v1 + α2v2, β1v1 + β2v2⟩ = α1β2 − α2β1, jeśli
to ma się zerować dla każdych α1, α2, to β1 = β2 = 0), więc V = H1 ⊠H⊥

1 i H⊥
1 jest nieosobliwa,

czyli można skorzystać z założenia indukcyjnego i zakończyć dowód.

Wniosek. Jeśli M jest macierzą alternującą, to istnieje odwracalna macierz Q taka, że

M = QT



0 1

−1 0

0 1

−1 0
. . .

0
. . .


Q,

czyli najpierw mamy na przekątnej bloki

[
0 1

−1 0

]
, a potem zera.

Uwaga. Dowolna forma alternująca jest z dokładnością do izometrii określona przez dwie liczby:
r = dim rad (V ) i s = dimS, gdzie V = rad (V )⊠ S i S jest nieosobliwa.

Lemat 1. Załóżmy, że charK = 2 i niech V = ⟨e1, u1, u2⟩ ma formę dwuliniową zadaną macierząa 0 0

0 0 1

0 1 0

 ,

gdzie a ̸= 0 (czyli V jest sumą płaszczyzny hiperbolicznej i przestrzeni rozpinanej przez wektor o
niezerowej normie). Wtedy V = ⊠3

i=1 ⟨vi⟩ dla pewnych wektorów v1, v2, v3.

Dowód. Ustalmy

v1 = e1 + u1 + u2, v2 = e1 + au1, v3 = e1 + (1 + a)u1 + u2.

Mamy ⟨v1, v2⟩ = a+a = 2a = 0, ⟨v1, v3⟩ = a+1+1+a = 0, ⟨v2, v3⟩ = a+a = 0. Zatem te wektory
ortogonalnie rozpinają całą przestrzeń.

Twierdzenie 10. Niech (V, ⟨·, ·⟩) będzie przestrzenią z niealternującą, symetryczną formą dwuli-
niową. Wtedy istnieje baza ortogonalna V , czyli V = ⊠dimV

i=1 ⟨vi⟩.
Dowód. Dla przestrzeni jednowymiarowej teza jest oczywista. Dalej zakładamy dimV ≥ 2. Istnieje
v ∈ V takie, że ⟨v, v⟩ ≠ 0. Możemy zapisać V = ⟨v⟩⊠ (⟨v⟩)⊥ = ⟨v⟩⊠ V ′, gdzie dimV ′ = dimV − 1.
Jeśli V ′ jest niealternująca, to możemy skorzystać z indukcji.

Dalej załóżmy, że V ′ jest alternująca. Jeśli charK ̸= 2, to ⟨·, ·⟩ na V ′ jest alternująca, czyli anty-
symetryczna, a do tego symetryczna, więc ⟨·, ·⟩ |V ′ ≡ 0. Zatem V ′ jest całkowicie zdegenerowana i
dowolna baza V ′ jest bazą ortogonalną.
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Dla charK = 2 możemy zapisać V ′ = ⊠k
i=1Hi ⊠ rad (V ′). Stosując powyższy lemat do każdej z

przestrzeni ⟨v⟩+Hi dostajemy bazę ortogonalną całej przestrzeni.

Wniosek. Jeśli M jest macierzą symetryczną i charK ̸= 2, to istnieje taka odwracalna macierz Q,
że M = QT diag (x1, . . . , xn)Q dla pewnych x1, . . . , xn. Ta sama teza zachodzi, jeśli charK = 2 i
przekątna nie jest zerowa.

Propozycja 9. Niech F będzie niealternującą, symetryczną, nieosobliwą formą dwuliniową o macie-
rzy M nad ciałem K. Jeśli K jest algebraicznie domknięte, to M ≡ I (forma jest identycznością w
pewnej bazie).

Dowód. Wiemy, że M ≡ diag (x1, . . . , xn). Możemy przeskalować wektory z bazy: ei → 1√
xi
ei

(pierwiastki istnieją z domkniętości algebraicznej), dostając M ≡ I (domnażamy z prawej i lewej
przez diagonalną macierz przejścia).

Propozycja 10. Niech F będzie niealternującą, symetryczną, nieosobliwą formą dwuliniową o ma-

cierzy M nad ciałem K. Jeśli K = R, to M ≡

[
In 0n×m

0m×n −Im

]
.

Dowód. Wiemy, że M ≡ diag (x1, . . . , xn+m). Możemy przeskalować wektory z bazy: ei → 1√
|xi|

ei,

dostając M ≡ diag (±1, . . . ,±1). Teraz wystarczy przepermutować wektory bazowe.

Propozycja 11. Niech F będzie niealternującą, symetryczną, nieosobliwą formą dwuliniową o ma-
cierzy M nad ciałem K. Jeśli K = F2k , to M ≡ I.

Dowód. Dla każdego a ∈ F2k mamy
(
a2

k−1
)2

= a, więc każdy element jest kwadratem i można
postąpić jak w przypadku ciała algebraicznie domkniętego.

Lemat 2. Niech q będzie potęgą liczby pierwszej większej od 2.

• Kwadratów w ciele Fq jest dokładnie q+1
2 .

• Niech d ∈ Fq nie będzie kwadratem. Dla każdego x ∈ Fq albo x = y2, albo x = dy2 dla
pewnego y.

• Dla każdego x ∈ Fq istnieją takie y, z ∈ Fq, że x = y2 + z2.

Dowód. • φ : F∗
q ∋ x → x2 ∈ F∗

q jest homomorfizmem, kerφ = {1,−1}, wszystkich niezerowych

kwadratów jest |Imφ| = |F∗
q |

|kerφ| =
q−1
2 , doliczając 0 mamy tezę.

• Niech S będzie zbiorem wszystkich niezerowych kwadratów. S i dS to jedyne warstwy φ, więc
każdy niezerowy element należy do jednej z nich.

• Niech T będzie zbiorem wszystkich kwadratów. Mamy |T | = |x− T | = q+1
2 , więc te zbiory

mają niepuste przecięcie.

Propozycja 12. Niech F będzie niealternującą, symetryczną, nieosobliwą formą dwuliniową o ma-
cierzy M nad ciałem K. Jeśli K = Fq i q jest potęgą liczby pierwszej większej od 2 a d ∈ Fq nie jest
kwadratem, to M ≡ diag (1, . . . , 1, ε), gdzie ε ∈ {1, d}.
Dowód. Dla dimV = 1 mamy M = [x] i można przeskalować przez kwadrat, dostając [1] lub [d].
Dalej wystarczy rozważyć dimV = 2, bo dla większych wymiarów można indukcyjnie rozpatrzeć
kolejne minory: diag (a1, a2, . . . , an) ≡ diag (1, ε, a3, . . . , an) ≡ diag (1, 1, ε, . . . , an) i tak dalej.

Mamy możliwości

[
a2 0

0 b2

]
,

[
a2 0

0 db2

]
,

[
da2 0

0 db2

]
. Pierwsze dwie po przemnożeniu przez kwa-
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draty dają nam postać z tezy. Ostatnią można zredukować do

[
d 0

0 d

]
. Ustalmy α, β ∈ Fq takie, że

α2+β2 = d−1. Połóżmy u = αe1+βe2 oraz v = βe1−αe2. Mamy ⟨u, u⟩ = ⟨v, v⟩ = d
(
α2 + β2

)
= 1.

Do tego ⟨u, v⟩ = αβd − βαd = 0. Zatem znaleźliśmy bazę, w której nasza forma jest zadana przez
identyczność.

4. Twierdzenia Witta 2025-11-07

Lemat 3. Niech f : A → B będzie izometrią pomiędzy dwoma alternującymi lub symetrycznymi
przestrzeniami i niech A = A1 ⊠A⊥

1 . Wtedy f (A1)
⊥
= f

(
A⊥

1

)
.

Dowód. Ustalmy a ∈ A⊥
1 i b = f (a′) ∈ f (A1). Wtedy ⟨f (a) , b⟩ = ⟨a, a′⟩ = 0. Z tego wynika

f (A1)
⊥ ⊇ f

(
A⊥

1

)
, a te przestrzenie mają ten sam wymiar, więc mamy równość.

Lemat 4. Niech V,W będą nieosobliwymi przestrzeniami z formami dwuliniowymi. Do tego załóżmy,
że te przestrzenie są alternujące (alternatywnie: że są symetryczne i charK ̸= 2). Niech S ≤ V ,
T ≤ W będą izometryczne. Obie podprzestrzenie S, T posiadają uzupełnienia nieosobliwe, to znaczy
takie minimalne S ≤ V i T ≤ W , że S ≤ S, T ≤ T i S, T są nieosobliwe. Do tego można wskazać
takie S, T , że dowolna izometria f : S → T rozszerza się do izometrii f : S → T .

Dowód. Rozważmy dowolny wektor izotropowy u ∈ V i podprzestrzeń E taką, że ⟨u⟩ ⊠ E ≤ V .
Twierdzimy, że istnieje taki wektor izotropowy v ∈ E⊥, że ⟨u, v⟩ = 1.

Mamy u /∈ E =
(
E⊥)⊥, więc istnieje v ∈ E⊥ taki, że ⟨u, v⟩ ≠ 0. Odpowiednie przeskalowanie v daje

nam ⟨u, v⟩ = 1. Jeśli V jest alternująca, to ⟨v, v⟩ = 0 mamy od razu. Jeśli nie jest, to zauważmy,
że αu + v ∈ E⊥ dla każdego α ∈ K. Do tego ⟨u, αu+ v⟩ = 1. Możemy założyć symetryczność i
charakterystykę różną od 2, więc ⟨αu+ v, αu+ v⟩ = 2α+⟨v, v⟩ i podstawienie α = − ⟨v,v⟩

2 daje nam
szukany izotropowy wektor αu+ v.

Niech S = rad (S) ⊠ US , gdzie US jest nieosobliwa i rad (S) = ⟨r1, . . . , rk⟩. Podstawiając w po-
przednich rozważaniach u = r1 i E = ⟨r2, . . . , rk⟩ ⊠ US dostajemy wektor s1 taki, że r1, s1 jest
parą hiperboliczną. Powtarzając dla u = r2 i E = ⟨r1, r3, . . . , rk⟩ ⊠ US dostajemy odpowiednie s2.
Kontynuując dostajemy przestrzeń S = ⟨r1, s1⟩⊠ . . .⊠ ⟨rk, sk⟩⊠US , która jest nieosobliwa, bo jest
ortogonalną sumą przestrzeni nieosobliwych (płaszczyzna hiperboliczna jest nieosobliwa). Do tego
S jest minimalną taką nadprzestrzenią S, bo usunięcie z niej si powodowałoby, że ri znalazłoby się
w radykale.

Podobnie mamy rozkład T = rad (T )⊠UT , gdzie rad (T ) = ⟨f (r1) , . . . , f (rk)⟩. Ta postać radykału
wynika z faktu, że f (rad (S)) ⊆ rad (T ) oraz f−1 (rad (T )) ⊆ rad (S), czyli f (rad (S)) = rad (T ).

Mamy więc uzupełnienie nieosobliwe T = ⟨f (r1) , s̃1⟩ ⊠ . . . ⊠ ⟨f (rk) , s̃k⟩ ⊠ UT oraz wiemy, że
f (US) = UT . Pozostało nam zdefiniować f̃ (si) = s̃i. Odwzorowanie f = f ∪ f̃ jest izometrią, bo
jest nią na każdej składowej ortogonalnej.

Lemat 5. Niech V,W będą nieosobliwymi, izometrycznymi przestrzeniami z formami dwuliniowymi.
Do tego załóżmy, że te przestrzenie są symetryczne i charK ̸= 2. Ustalmy u, v ∈ V takie, że
⟨u, u⟩ = ⟨v, v⟩ ≠ 0. Wtedy istnieje izometria f : V → W taka, że f (u) = v lub f (u) = −v.

Dowód. Łatwo pokazać, że jeśli ⟨w,w⟩ ≠ 0, to σw (x) = x−2 ⟨x,w⟩
⟨w,w⟩w jest izometrią (odbicie względem

wektora). Mamy u + v ⊥ u − v. Co najmniej jeden z tych wektorów jest nieizotropowy, bo gdyby
oba były, to u+ v + u− v = 2u też, ale wtedy u byłby izotropowy.

Jeśli ⟨u+ v, u+ v⟩ ̸= 0, to σu+v (u+ v) = − (u+ v), σu+v (u− v) = u − v. Dodając stronami
σu+v (2u) = −2v, można skrócić dwójki i mamy σu+v (u) = −v. Jeśli ⟨u− v, u− v⟩ ≠ 0, to analo-
gicznie σu−v (u) = v.

Twierdzenie 11 (Witta o skracaniu). Niech V,W będą nieosobliwymi, izometrycznymi przestrzeniami
z formami dwuliniowymi. Do tego załóżmy, że te przestrzenie są alternujące (alternatywnie: że są
symetryczne i charK ̸= 2). Niech V = S ⊠ S⊥ i W = T ⊠ T⊥ dla pewnych S ≤ V, T ≤ W takich,
że S i T są izometryczne. W takiej sytuacji S⊥ jest izometryczne z T⊥.
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Dowód. S jest nieosobliwa, bo V = S ⊠ S⊥. Zatem S⊥ również jest nieosobliwa. Podobnie T⊥ jest
nieosobliwa.

Dla formy alternujacej mamy S ≃ T ⇐⇒ dimS = dimT ⇐⇒ dimS⊥ = dimT⊥ ⇐⇒ S⊥ ≃ T⊥,
bo przestrzeń nieosobliwa z formą alternującą jest sumą ortogonalną płaszczyzn hiperbolicznych.
Teraz rozważymy przypadek formy symetrycznej.

Bez straty ogólności możemy przyjąć V = W , bo jeśli σ : V → W jest izometrią, to T ⊠T⊥ = W =
σ (V ) = σ (S)⊠σ

(
S⊥) = σ (S)⊠σ (S)

⊥. Jeśli udowodnimy twierdzenie dla V = W , to dostaniemy
σ (S)

⊥ ≃ T⊥, a S⊥ ≃ σ (S)
⊥ da nam tezę.

Jeśli dimS = 1, to S = ⟨u⟩, T = ⟨v⟩ i mamy ⟨u⟩⊠ S⊥ = ⟨v⟩⊠ T⊥. Wiemy, że istnieje izometria f :
S → T i możemy wybrać v tak, że v = f (u). Wiemy, że ⟨u, u⟩ = ⟨f (u) , f (u)⟩ ≠ 0 (nieosobliwość),
więc istnieje izometria ι : V → V taka, że ι (u) = ±f (u). W szczególności ι (S) = T , więc ι

(
S⊥) =

ι (S)
⊥
= T⊥ i mamy odpowiednią izometrię.

Teraz pokażemy krok indukcyjny. Niech dimS = k + 1 i niech f : S → T będzie izometrią. Wy-
bierzmy nieizotropowy wektor u ∈ S i połóżmy S = ⟨u⟩ ⊠ U . Takie u istnieje, bo gdyby forma
była alternująca, to wobec charakterystyki różnej od 2 byłaby zerowa, a więc osobliwa. Mamy
⟨u⟩⊠U ⊠ S⊥ = ⟨f (u)⟩⊠ f (U)⊠ T⊥. Z bazy indukcji istnieje izometria ϕ : U ⊠ S⊥ → f (U)⊠ T⊥.

Zawężając się do przestrzeni V ′ = f (U)⊠T⊥ = ϕ (U)⊠ϕ
(
S⊥) dostajemy z założenia indukcyjnego,

że T⊥ ≃ ϕ
(
S⊥), a ϕ

(
S⊥) ≃ S⊥, więc mamy tezę.

Twierdzenie 12 (Witta o przedłużaniu). Niech V,W będą nieosobliwymi, izometrycznymi przestrze-
niami z formami dwuliniowymi. Do tego załóżmy, że te przestrzenie są alternujące (alternatywnie:
że są symetryczne i charK ̸= 2). Niech S ≤ V, T ≤ W i niech f : S → T będzie izometrią. Wtedy
istnieje izometria f̃ : V → W taka, że f̃ |S = f .

Dowód. Wiemy, że możemy rozszerzyć f do izometrii f zdefiniowanej pomiędzy uzupełnieniami
nieosobliwymi S i T . Zatem możemy bez straty ogólności założyć, że S i T są nieosobliwe. Wtedy
V = S⊠S⊥, W = T⊠T⊥. Z twierdzenia o skracaniu istnieje izometria σ : S⊥ → T⊥. Każdy element
v ∈ V można jednoznacznie przedstawić w postaci v = s + s′ dla s ∈ S i s′ ∈ S⊥. Definiujemy
f̃ (s+ s′) = f (s) + σ (s′), co jest izometrią.

5. Teoria kategorii
2025-11-14

Definicja 20. Mamy klasę obiektów C. Dla każdych A,B ∈ C mamy klasę morfizmów HomC (A,B)
postaci f : A → B, które można składać i które spełniają aksjomaty:

1. Jeśli mamy morfizmy f ∈ HomC (A,B) i g ∈ HomC (B,C), to istnieje morfizm g ◦ f ∈
HomC (A,C).

2. Dla każdego A ∈ C istnieje dokładnie jeden morfizm idA ∈ HomC (A,A) taki, że idA ◦ g = g i
f ◦ idA = f dla g ∈ HomC (C,A) i f ∈ HomC (A,B). Inaczej mówiąc, poniższy diagram jest
przemienny.

C A B
g f

idA

3. Składanie jest łączne f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Przykład. 1. W kategorii zbiorów morfizmami są wszystkie funkcje.

2. W kategorii grup morfizmy to homomorfizmy grup.

3. W kategorii przestrzeni topologicznych morfizmy to funkcje ciągłe.

4. W kategorii przestrzeni wektorowych morfizmy to funkcje liniowe. Kategoria przestrzeni wek-
torowych nad ustalonym ciałem jest podkategorią tej kategorii.
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Definicja 21. Praporządkiem (pre-order) nazywamy relację zwrotną, przechodnią, ale niekoniecznie
antysymetryczną. Każdy praporządek zadaje kategorię, w której obiektami są elementy porządko-
wane przez praporządek, a morfizm a → b istnieje dokładnie wtedy, gdy a ≤ b.

Definicja 22. Dla kategorii A i B funktorem nazywamy odwzorowanie F : A → B przyporządko-
wujące obiekty z jednej kategorii obiektom z drugiej kategorii, któremu towarzyszy odwzorowanie
między morfizmami F : HomA (A1, A2) → HomB (F (A1) , F (A2)) takie, że F (idA) = idF (A) oraz
F (f ◦ g) = F (f) ◦ F (g).

Przykład. Istnieją funktory zapominania (forgetful), które są zanurzeniem w większą kategorię, na
przykład z przestrzeni topologicznych w zbiory.

Definicja 23. O zwykłych funktorach mówimy, że są kowariantne. Funktor jest kontrawariantny, jeśli
indukowany funktor na morfizmach prowadzi HomA (A1, A2) → HomB (F (A2) , F (A1)). Wtedy też
F (f ◦ g) = F (g) ◦ F (f).

Definicja 24. Dla ustalonego A ∈ C funktorem Yonedy nazywamy funktor C ∋ X → Hom(A,X) ∈
Set, który każdemu X przyporządkowuje zbiór morfizmów z A do X. Kontrawariantny funktor
Yonedy dokonuje przypisania C ∋ X → Hom(X,A) ∈ Set.

Definicja 25. Niech F,G : A → B będą funktorami (kowariantnymi). Naturalna transformacja
F =⇒ G to kolekcja morfizmów ηX : F (X) → G (X) takich, że dla morfizmu f : X → Y istnieje
morfizm ηY : F (Y ) → G (Y ) taki, że poniższy diagram jest przemienny, czyli G (f)◦ηX = ηY ◦F (f).
Dla funktorów kontrawariantnych odpowiednie strzałki się odwracają.

F (X) G(X)

F (Y ) G(Y )

ηX

F (f) G(f)

ηY

Definicja 26. Naturalny izomorfizm F ≃ G to naturalna transformacja taka, że każde ηX : F (X) →
G (X) jest izomorfizmem.

Przykład. Wiemy, że dla skończenie wymiarowej przestrzeni wektorowej V o bazie {e1, . . . , en}
mamy izomorfizm z V ∗ zadany przez bazę {e∗1, . . . , e∗n}. Taki izomorfizm nie jest naturalny. Z kolei
odwzorowanie V ∋ v → (V ∗ ∋ f → f (v)) ∈ V ∗∗ jest naturalnym izomorfizmem.

Definicja 27. Rozważmy praporządek i funktor F z tego praporządku w kategorię C. Ten funktor
zadaje nam obiekty {Ci} oraz morfizmy fij : Ci → Cj dla każdych i, j takich, że i ≤ j. Stożkiem tego

funktora nazywamy obiekt ∆F taki, że istnieją morfizmy φi : ∆F → Ci takie, że
∆F

Ci Cj

φjφi

fij

jest przemienny. Kostożkiem nazywamy element ∇F taki, że istnieją morfizmy φi : Ci → ∇F takie,

że
Ci Cj

∇F

fij

φi φj

jest przemienny.

Definicja 28. Rozważmy praporządek i funktor F z tego praporządku w kategorię C. Granicą nazy-
wamy taki stożek Xlim, że dla każdego stożka X istnieje jedyny morfizm Ψ : X → Xlim, dla którego
poniższy diagram jest przemienny.
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X

Xlim

Ci Cj

Ψ

fij

Definicja 29. Rozważmy praporządek i funktor F z tego praporządku w kategorię C. Kogranicą
nazywamy taki kostożek Ylim, że dla każdego kostożka Y istnieje jedyny morfizm Ψ : Ylim → Y , dla
którego poniższy diagram jest przemienny.

Ci Cj

Ylim

Y

fij

Ψ

Twierdzenie 13. Jeśli (ko)granica istnieje, to jest jedyna z dokładnością do jedynego izomorfizmu.

Dowód. Z przemienności poniższego diagramu mamy, że idX′
lim

= Ψ ◦Ψ′ i idXlim
= Ψ′ ◦Ψ.

Xlim Ci Cj X ′
lim

Ψ

Ψ′

6. Produkt tensorowy
2025-11-28

Definicja 30. Niech V1, . . . , Vk,W będą przestrzeniami wektorowymi nad ciałem K. f : V1 × . . . ×
Vk → W jest formą k-liniową, jeśli jest liniowa ze względu na każdą współrzędną.

Definicja 31. Niech V1, . . . , Vk będą przestrzeniami wektorowymi nad ciałem K. Produktem (ilo-
czynem) tensorowym nazywamy (jedyny) obiekt V1⊗ . . .⊗Vk wraz z k-liniowym morfizmem Π taki,
że dla dowolnego W i k-liniowego φ : V1 × . . . × Vk → W istnieje jedyne odwzorowanie liniowe
Ψ : V1 ⊗ . . .⊗ Vk → W takie, że poniższy diagram jest przemienny.

V1 × . . .× Vk W

V1 ⊗ . . .⊗ Vk

Π
k-liniowe

φ
k-liniowe

Ψ
liniowe

Uwaga. Jeśli produkt tensorowy istnieje, to jest jedyny z dokładnością do jedynego izomorfizmu.

Lemat 6. Dla dowolnych przestrzeni A,B,C zachodzi

(A⊗B)⊗ C ≃ A⊗B ⊗ C ≃ A⊗ (B ⊗ C) .

Zatem produkt tensorowy trzech przestrzeni jest tym samym, co produkt tensorowy produktu ten-
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sorowego dwóch przestrzeni z trzecią przestrzenią.

Dowód. Pokażemy, że (A⊗B) ⊗ C spełnia tę samą własność uniwersalną, co A ⊗ B ⊗ C. Dowód
dla A⊗ (B ⊗ C) jest identyczny.

Niech φ : A×B×C → W będzie odwzorowaniem 3-liniowym. Dla ustalonego c ∈ C odwzorowanie
zadane przez φc = φ (·, ·, c) : A × B → W jest dwuliniowe, więc z własności uniwersalnej A ⊗ B
istnieje liniowe odwzorowanie Φc : A⊗B → W takie, że φc = Φc ◦Π.

A×B W

A⊗B

φc

Π
Φc

Funkcja Φ : (A⊗B)×C ∋ (x, c) → Φc (x) ∈ W jest dwuliniowa. Rzeczywiście, liniowość ze względu
na pierwszy argument wynika z liniowości Φc, a liniowość ze względu na drugi wynika z tego, że dla
c, c′ ∈ C mamy φαc+βc′ = αφc + βφc′ = (αΦc + βΦc′) ◦ Π, więc Φαc+βc′ = αΦc + βΦc′ z jedyności
funkcji Φc dla ustalonego c.

Zatem z własności uniwersalnej dla produktu tensorowego (A⊗B) ⊗ C istnieje dokładnie jedna
funkcja Ψ : (A⊗B) ⊗ C → W taka, że dolna część poniższego diagramu jest przemienna. Mamy
φ = Φ ◦ (Π, id), więc jej przemienność jest równoważna z przemiennością całego diagramu. Zatem
Ψ jest jedyną funkcją, dla której ten diagram jest przemienny i mamy tezę.

A×B × C W

(A⊗B)× C (A⊗B)⊗ C

φ

(Π,id)
Φ Ψ

Lemat 7. Niech A⊗KB będzie takim obiektem (z zadaną formą dwuliniową ΠK : A×B → A⊗KB),
że dla każdego dwuliniowego ξ : A×B → K istnieje jedyne odwzorowanie liniowe Ψ : A⊗K B → K
takie, że poniższy diagram jest przemienny. Wtedy A⊗K B ≃ A⊗B.

A×B K

A⊗K B

ξ

ΠK Ψ

Dowód. Mamy W ≃ Kn dla pewnego n. Niech φ : A×B → W będzie dwuliniowe. Wtedy jego rzut
na i-tą współrzędną φi = πi ◦ φ (gdzie πi jest rzutowaniem Kn → K połączonym z izomorfizmem
W ≃ Kn) również jest dwuliniowy. Zatem istnieje jedyne odwzorowanie liniowe Ψi : A ⊗K B → K
takie, że φi = Ψi◦ΠK. Zdefiniujmy Ψ =

∑n
i=1 ιi◦Ψi (gdzie ιi jest zanurzeniem K → Kn połączonym

z izomorfizmem Kn ≃ W ). Mamy φ =
∑n

i=1 ιi ◦ φi = Ψ ◦ ΠK. Do tego Ψ jednoznacznie wyznacza
Ψi = πi ◦Ψ, więc jest jedyne. Całą sytuację obrazuje poniższy diagram.

A×B W ≃ Kn K

A⊗K B

φ

ΠK

πi

ιi

Ψi

Ψ

Notacja. przez BiLin (A,B) oznaczamy przestrzeń form dwuliniowych A×B → K.

Twierdzenie 14. Dla skończenie wymiarowych przestrzeni A,B produkt tensorowy A⊗B istnieje.

Dowód. Pokażemy, że odpowiednim produktem tensorowym jest przestrzeń BiLin (A,B)
∗ (prze-

strzeń dualna form dwuliniowych). Już wiemy, że wystarczy wykazać własność uniwersalną dla
morfizmów idących w ciało. Zaczynamy od zdefiniowania odwzorowania Π : A×B → BiLin (A,B)

∗

wzorem Π(a, b) (f) = f (a, b).
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Niech φ : A × B → K będzie formą dwuliniową. Definiujemy Ψ : BiLin (A,B)
∗ ∋ F → F (φ) ∈ K.

Mamy (Ψ ◦Π) (a, b) = Π (a, b) (φ) = φ (a, b). Niech A′, B′ będą bazami odpowiednio A i B. Za-
uważmy, że rozważana przestrzeń funkcjonałów BiLin (A,B)

∗ jest rozpinana przez zbiór funkcjona-
łów {f → f (a, b) : a ∈ A′, b ∈ B′}, co wynika z konstrukcji bazy przestrzeni dualnej (tutaj ważny
jest skończony wymiar). Zatem Π(A×B) = BiLin (A,B)

∗ i Ψ jest wyznaczone jednoznacznie, bo
wartości na Π(A×B) muszą być takie, jakie są.

A×B K

BiLin (A,B)
∗

φ

Π Ψ

Uwaga. Istnienie produktu tensorowego dwóch przestrzeni implikuje istnienie produktu tensorowego
dowolnej skończonej ilości przestrzeni. Zatem wiemy, że produkt tensorowy V1 ⊗ . . .⊗ Vk istnieje.

Definicja 32. Niech V,W będą przestrzeniami wektorowymi nad K. Przez A (V,W ) oznaczamy
(wolną) przestrzeń wektorową nad K o bazie {ev,w : v ∈ V,w ∈ W}. Wprowadzamy oznaczenie v ⊗
w = ev,w.

Przykład. Jeśli K = C, dimV = dimW = 1, to w A (V,W ) mamy bazę {z1 ⊗ z2 : z1, z2 ∈ C}, a
więc dimA = c.

Definicja 33. Dla przestrzeni wektorowych V,W oraz przestrzeni A (V,W ) definiujemy

L = span


(αv)⊗ (βw)− αβ (v ⊗ w) ,

(v1 + v2)⊗ w − v1 ⊗ w − v2 ⊗ w

v ⊗ (w1 + w2)− v ⊗ w1 − v ⊗ w2

: α, β ∈ K, v, v1, v2 ∈ V,w,w1, w2 ∈ W

 .

Twierdzenie 15. A (V,W )⧸L wraz z odwzorowaniem Π : V ×W ∋ (v, w) → [v ⊗ w] ∈ A (V,W )⧸L
jest produktem tensorowym V ⊗W .

Dowód. Dwuliniowość Π wynika wprost z definicji przestrzeni L. Niech φ : V × W → T będzie
dwuliniowe. Definiujemy Ψ : A (V,W )⧸L ∋ [v ⊗ w] → φ (v, w) ∈ T poprzez wskazanie wartości na
bazie. Jest to dobrze określone, bo z dwuliniowości φ przestrzeń L leży w jądrze odwzorowania
v ⊗ w → φ (v, w), a więc to odwzorowanie faktoryzuje się przez iloraz. Oczywiście Ψ ◦ Π = φ.
Wartość Ψ na wektorach postaci [v ⊗ w] jest wymuszona przez φ, a więc Ψ jest jedyne.

Twierdzenie 16. Niech E i F będą bazami V i W . Przestrzeń span {e⊗ f : e ∈ E, f ∈ F} z zadanym
odwzorowaniem Π

(∑
e∈E aee,

∑
f∈F bff

)
=
∑

e∈E,f∈F aebfe⊗ f jest produktem tensorowym V ⊗
W .
Dowód. Dwuliniowość Π jest jasna. Niech φ : V × W → T będzie dwuliniowe. Niech Ψ(e⊗ f) =
φ (e, f) dla e ∈ E, f ∈ F . Oczywiście Ψ ◦Π = φ, a jedyność wynika z tego, że φ wymusza wartości
na e⊗ f .

Uwaga. Wskazaliśmy trzy izomorficzne konstrukcje produktu tensorowego. W pierwszej dowód je-
dyność wymagał wskazania bazy, w trzeciej sama konstrukcja tego wymagała. W drugiej nie korzy-
staliśmy z wyboru bazy, ale wprowadzone definicje były dużo bardziej rozbudowane niż w dwóch
pozostałych konstrukcjach.

Mamy izomorfizm między trzecią a drugą konstrukcją zadany przez e ⊗ f → [ee,f ]. O przestrzeni
V ⊗W będziemy zazwyczaj myśleć jak o przestrzeni kombinacji liniowych elementów postaci v ⊗
w z bazą {e⊗ f : e ∈ E, f ∈ F} (trzecia konstrukcja), w której „operator” ⊗ jest dwuliniowy –
(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w i tak dalej (druga konstrukcja).
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Definicja 34. Tensor t ∈ V1 ⊗ . . . ⊗ Vn nazywamy prostym, jeśli istnieją vi ∈ Vi takie, że t =
v1 ⊗ . . .⊗ vn.

Ranga tensora t to najmniejsza liczba rk (t) ∈ N taka, że t jest sumą rk (t) tensorów prostych.

Przykład. Odwzorowanie m : Mn×n × Mn×n ∋ (A,B) → AB ∈ Mn×n jest dwuliniowe, a więc
istnieje odpowiadający mu tensor. Rangę tego tensora można powiązać z liczbą mnożeń potrzebnych
do wymnożenia tych macierzy. Ograniczenia na nią wiążą się więc z tym, jak szybko jesteśmy w
stanie mnożyć macierze.

7. Formy wieloliniowe
2025-12-12

Definicja 35. Mówimy, że forma k-liniowa f : V k → K jest:

• symetryczna, jeśli f (v1, . . . , vk) = f
(
vσ(1), . . . , vσ(k)

)
dla każdego σ ∈ Sk.

• antysymetryczna, jeśli f (v1, . . . , vk) = sgn (σ) f
(
vσ(1), . . . , vσ(k)

)
dla każdego σ ∈ Sk.

• alternująca, jeśli f (v1, . . . , vk) = 0 gdy tylko vi = vj dla pewnych i ̸= j.

Propozycja 13. Jeśli forma k-liniowa jest alternująca, to jest antysymetryczna. Jeśli charK ̸= 2, to
forma antysymetryczna jest alternująca.

Dowód. Mamy

0 = f (v1, . . . , vi + vi+1, vi + vi+1, . . . , vk) = f (v1, . . . , vi, vi, . . . , vk) + f (v1, . . . , vi+1, vi+1, . . . , vk)

+ f (v1, . . . , vi, vi+1, . . . , vk) + f (v1, . . . , vi+1, vi, . . . , vk)

= f (v1, . . . , vi, vi, . . . , vk) + f (v1, . . . , vi+1, vi+1, . . . , vk) ,

co daje jedną stronę tezy dla transpozycji sąsiednich elementów, a więc dla wszystkich permutacji.
Przy i < j z antysymetryczności f (v1, . . . , vi, . . . , vj , . . . , vk) = −f (v1, . . . , vj , . . . , vi, . . . , vk), więc
dla vi = vj i przy charK ̸= 2 obie strony są równe 0.

Definicja 36. Potęga symetryczna SkV to taka przestrzeń wraz k-liniowym odwzorowaniem syme-
trycznym Π : V k → SkV , że dla każdej symetrycznej formy k-liniowej f istnieje jedyne odwzoro-
wanie liniowe Ψ : SkV → K takie, że poniższy diagram jest przemienny.

V k K

SkV

f

Π
Ψ

Definicja 37. Potęga zewnętrzna
∧k

V to taka przestrzeń wraz z k-liniowym odwzorowaniem alter-
nującym Π : V k →

∧k
V , że dla każdej alternującej formy k-liniowej f istnieje jedyne odwzorowanie

liniowe Ψ :
∧k

V → K takie, że poniższy diagram jest przemienny.

V k K

∧k
V

f

Π
Ψ

Notacja. Przez V ⊗k mamy na myśli przestrzeń V ⊗ . . .⊗ V︸ ︷︷ ︸
k razy

.

Twierdzenie 17. Potęga symetryczna SkV i potęga zewnętrzna
∧k

V istnieją.
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Dowód. Niech Iks = span
{
v1 ⊗ . . .⊗ vk − vσ(1) ⊗ . . .⊗ vσ(k) : ∀i∈[k] vi ∈ V, σ ∈ Sk

}
. Pokażemy, że

przestrzeń V ⊗k
⧸Iks

jest odpowiednią potęgą symetryczną. Niech f : V k → K będzie symetrycznym

odwzorowaniem k-liniowym. Istnieje jedyne odwzorowanie liniowe Ψ : V ⊗k → K takie, że f = Ψ◦Π.
Zauważmy, że jest ono symetryczne (symetria f daje symetrię Ψ na bazie, więc Ψ jest symetryczne).

Niech Π̃ będzie złożeniem Π z rzutowaniem na rozważaną przestrzeń ilorazową. Z symetryczności
Ψ odwzorowanie Ψ̃ : V

⊗k
⧸Iks

∋ [v] → Ψ(v) jest poprawnie określone. Jest to jedyny sposób na

określenie odwzorowania spełniającego f = Ψ̃ ◦ Π̃, zatem dowód jest zakończony.

V k K

V ⊗k

V ⊗k
⧸Iks

f

Π

Π̃
ΨΨ

Ψ̃

Dla potęgi zewnętrznej identyczny argument korzysta z wydzielenia przez przestrzeń

Ika = span
{
v1 ⊗ . . .⊗ vk : ∀ℓ∈[k] vℓ ∈ V,∃i,j∈[k],i̸=j vi = vj

}
.

Uwaga. Korzystając z konstrukcji produktu tensorowego przez przestrzeń odwzorowań k-liniowych
możemy też uzyskać

SkV = Link (V,K)
∗
⧸span

{
f ∈ Link (V,K)

∗
: ∀φ symetryczne f (φ) = 0

},
∧

kV = Link (V,K)
∗
⧸span

{
f ∈ Link (V,K)

∗
: ∀φ alternujące f (φ) = 0

}.
Notacja. Dla elementu [v1 ⊗ . . .⊗ vk] ∈ SkV stosujemy notację v1 · . . . · vk.

Dla elementu [v1 ⊗ . . .⊗ vk] ∈
∧k

V stosujemy notację v1 ∧ . . . ∧ vk.

Lemat 8. Niech vi ∈ V . Zachodzi v1 ∧ . . . ∧ vk = 0 ⇐⇒ v1, . . . , vk są liniowo zależne.

Dowód. ( =⇒ ) Załóżmy, że v1, . . . , vk są liniowo niezależne i uzupełnijmy je do bazy elementami
vk+1, . . . , vn. Utożsamiając (v1 ∧ . . . ∧ vk)∧ (vk+1 ∧ . . . ∧ vn) z funkcjonałem na przestrzeni odwzo-
rowań n-liniowych widzimy, że nie zeruje się on na wyznaczniku, bo det (v1, . . . , vn) ̸= 0. Wyznacznik
jest antysymetryczny, więc rozważany funkcjonał jest niezerowy (nawet w przestrzeni ilorazowej).
W szczególności v1 ∧ . . . ∧ vk jest niezerowy.

( ⇐= ) Jeśli vℓ =
∑

i ̸=ℓ aivi, to

v1 ∧ . . . ∧ vℓ ∧ . . . ∧ vk = v1 ∧ . . . ∧
∑
i̸=ℓ

aivi ∧ . . . ∧ vk =
∑
i ̸=ℓ

ai (v1 ∧ . . . ∧ vi ∧ . . . ∧ vk) = 0.

Propozycja 14. Niech {e1, . . . , en} będzie bazą V . Bazą przestrzeni
∧k

V jest zbiór

{ei1 ∧ . . . ∧ eik : 1 ≤ i1 < . . . < ik ≤ n} .
Dowód. Mamy ei ∧ ej = −ej ∧ ei (wynika z rozpisania 0 = (ei + ej) ∧ (ei + ej)). Dla ei1 ∧ . . . ∧ eik
istnieje takie σ ∈ Sk, że iσ(1) ≤ . . . ≤ iσ(k). Wtedy ei1∧. . .∧eik = sgn (σ) eiσ(1)

∧. . .∧eiσ(k)
. Co więcej

można założyć, że nierówności są ostre, bo inaczej rozważany element się zeruje. Zatem rozważany
zbiór generuje

∧k
V (bo elementy postaci ei1 ∧ . . . ∧ eik są obrazem bazy produktu tensorowego w
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rzutowaniu na odpowiednią przestrzeń ilorazową).

Załóżmy, że
∑

1≤i1<...<ik≤n ai1...ikei1 ∧ . . .∧eik = 0. Ustalmy jeden element ej1 ∧ . . .∧ejk i ponume-
rujmy pozostałe elementy rozważanej bazy V tak, by miała ona postać

{
ej1 , . . . , ejk , ejk+1

, . . . , ejn
}
.

Wtedy domnażając przez ejk+1
∧ . . . ∧ ejn mamy

0 =
∑

1≤i1<...<ik≤n

ai1...ik (ei1 ∧ . . . ∧ eik) ∧
(
ejk+1

∧ . . . ∧ ejn
)
= aj1...jkej1 ∧ . . . ∧ ejk ∧ ejk+1

∧ ejn ,

więc aj1...jk = 0. Wobec dowolności tego ciągu mamy liniową niezależność.

Propozycja 15. Niech {e1, . . . , en} będzie bazą V . Bazą przestrzeni SkV jest zbiór

{ei1 . . . eik : 1 ≤ i1 ≤ . . . ≤ ik ≤ n} .
Dowód. Mamy eiej = ejei. Dla ei1 . . . eik istnieje takie σ ∈ Sk, że iσ(1) ≤ . . . ≤ iσ(k). Wtedy
ei1 . . . eik = eiσ(1)

. . . eiσ(k)
. Zatem rozważany zbiór generuje SkV (bo elementy postaci ei1 . . . eik są

obrazem bazy produktu tensorowego w rzutowaniu na odpowiednią przestrzeń ilorazową).

Załóżmy, że
∑

i1≤...≤ik
ai1...ikei1 . . . eik = 0. Utożsamiamy 0 z F ∈ (Link (V,K))

∗ takim, że F (φ) = 0
dla każdego φ symetrycznego. Niech Hj1...jk będzie stabilizatorem działania Sk na ciąg j1 ≤ . . . ≤ jk.

Ustalmy symetryczną funkcję k-liniową φj1...jk =
∑

σ∈Sk⧸Hj1...jk

e∗jσ(1)...jσ(k)
(bierzemy po jednym

reprezentancie z każdej warstwy – definiowana funkcja nie zależy od wyboru reprezentantów, bo
elementy jednej warstwy różnią się tylko tym, gdzie posyłają elementy ciągu o tej samej wartości).
Dostajemy teraz 0 = F (φj1...jk) = aj1...jk . Wobec dowolności j1 . . . jk mamy liniową niezależność.

Wniosek. 1.
∧k

V = {0} dla k > n.

2.
∧k

V ≃
∧n−k

V dla 0 ≤ k ≤ n.

3. dimSkV → +∞.

4. SkV jest izomorficzne z przestrzenią K [x1, . . . , xn]k wielomianów n zmiennych stopnia k.

Dowód. 1. Nie istnieje k elementowy ściśle rosnący ciąg o elementach z {1, . . . , n}.

2. Dla ciągu 1 ≤ i1 < . . . < ik ≤ n istnieje dokładnie jeden ciąg 1 ≤ i′1 < . . . < i′n−k ≤ n taki, że{
i1, . . . , ik, i

′
1, . . . , i

′
n−k

}
= {1, . . . , n}. Posyłając ei1 ∧ . . . ∧ eik → ei′1 ∧ . . . ∧ ei′n−k

dostajemy
izomorfizm.

3. Oczywiste.

4. Posyłając ei1 . . . eik → xi1 . . . xik dostajemy izomorfizm.

Notacja. Permutację σ ∈ Sk można utożsamić z odwzorowaniem σ : V k → V k zadanym poprzez

σ ((vi1 , . . . , vik)) =
(
vσ(i1), . . . , vσ(k)

)
.

Odpowiadające mu odwzorowanie na tensorach σ : V ⊗k → V ⊗k jest zadane tym samym wzorem.

Definicja 38. Tensor t ∈ V ⊗k jest symetryczny, jeśli σ (t) = t dla każdego σ ∈ Sk.

Tensor t ∈ V ⊗k jest antysymetryczny, jeśli σ (t) = sgn (σ) t dla każdego σ ∈ Sk.

Definicja 39. Przy charK = 0 definiujemy symetryzację S : V ⊗k ∋ t → 1
k!

∑
σ∈Sk

σ (t) oraz antysy-
metryzację A : V ⊗k ∋ t → 1

k!

∑
σ∈Sk

sgn (σ)σ (t). Odwzorowanie te posyłają tensory odpowiednio
w przestrzeń tensorów symetrycznych i antysymetrycznych.
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8. Algebry tensorowe
2026-01-09

Definicja 40. Mnożenie tensorów to odwzorowanie dwuliniowe mk,ℓ : V
⊗k×V ⊗ℓ → V ⊗(k+ℓ) zadane

przez
(v1 ⊗ . . .⊗ vk, w1 ⊗ . . .⊗ wℓ) → v1 ⊗ . . .⊗ vk ⊗ w1 ⊗ . . .⊗ wℓ.

Notacja. Dla v ∈ V ⊗k i w ∈ V ⊗ℓ piszemy v ⊗ w = mk,ℓ (v, w).

Uwaga. Mnożenie tensorów jest zgodne ze strukturami potęgi symetrycznej i zewnętrznej. Oznacza
to, że mamy dobrze zdefiniowane operacje mnożenia SkV × SℓV ∋ (t, s) → ts ∈ Sk+ℓV oraz∧k

V ×
∧ℓ

V ∋ (t, s) → t ∧ s ∈
∧k+ℓ

V .

Definicja 41. Algebrą nad K nazywamy pierścień A (w naszym przypadku z jedynką), który jest
przestrzenią wektorową nad K. Inaczej mówiąc: odwzorowanie zadane przez 1K → 1A jest mono-
morfizmem.

Definicja 42. Niech V będzie przestrzenią wektorową. Przestrzenie

TV =

∞⊕
k=0

V ⊗k,

SV =

∞⊕
k=0

SkV,

∧
V =

∞⊕
k=0

∧
kV

nazywamy odpowiednio algebrą tensorową, algebrą symetryczną oraz algebrą zewnętrzną.

Uwaga. Mamy dim
∧
V < ∞, bo

∧k
V = {0} dla k > dimV . Przestrzenie TV i SV są nieskończo-

nego wymiaru.

Uwaga. Mnożenie tensorów jest łączne, co wynika z naturalnego izomorfizmu (A⊗B) ⊗ C ≃ A ⊗
(B ⊗ C). Z tego od razu mamy, że wprowadzone przestrzenie są algebrami (pozostałe aksjomaty
łatwo widać).

Uwaga. Z definicji potęgi symetrycznej i zewnętrznej istnieją epimorfizmy πk
s : V ⊗k → SkV oraz

πk
a : V ⊗k →

∧k
V . Sumują się one do epimorfizmów πs : TV → SV i πa : TV →

∧
V .

Twierdzenie 18. Jądrem epimorfizmu πs : TV → SV jest ideał (dwustronny) Is ⊆ TV generowany
przez elementy postaci v ⊗ w − w ⊗ v, gdzie v, w ∈ V .

Dowód. Mamy v ⊗ w − w ⊗ v ∈ kerπ2
s ⊆ kerπs, więc Is ⊆ kerπs.

Niech σ, τ ∈ Sk. Jeżeli dla dowolnego t ∈ V ⊗k mamy t− σ (t) , t− τ (t) ∈ Is, to mamy

t− (τ ◦ σ) (t) = t− τ (σ (t)) = (t− σ (t)) + (σ (t)− τ (σ (t))) ∈ Is.

Zatem wystarczy wykazać tezę dla σ będącego transpozycją sąsiednich elementów i i i + 1. Niech
t = v1 ⊗ vi ⊗ vi+1 ⊗ . . . ⊗ vk. Mamy vi ⊗ vi+1 − vi+1 ⊗ vi ∈ Is. Domnażając z lewej strony przez
v1⊗ . . .⊗vi−1 a z prawej przez vi+2⊗ . . .⊗vk dostajemy t−σ (t) ∈ Is. Z tego wynika, że kerπs ⊆ Is,
a więc mamy tezę.

Twierdzenie 19. Jądrem epimorfizmu πa : TV →
∧
V jest ideał (dwustronny) Ia ⊆ TV generowany

przez elementy postaci v ⊗ v, gdzie v ∈ V .

Dowód. Mamy v⊗v ∈ kerπ2
a ⊆ kerπa, więc Ia ⊆ kerπa. Pozostaje pokazać, że v1⊗ . . .⊗vk ∈ Ia gdy
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vi = vi+j dla pewnych i, j. Ia jest ideałem dwustronnym, więc wystarczy pokazać vi⊗. . .⊗vi+j ∈ Ia.
Dla j = 1 tezę mamy natychmiast. Niech j > 1 i v = vi = vi+j , w = vi+j−1. Mamy

Ia ∋ v ⊗ . . .⊗ (v + w)⊗ (v + w) =

(v ⊗ . . .⊗ v ⊗ v) + (v ⊗ . . .⊗ w ⊗ w) + (v ⊗ . . .⊗ v ⊗ w) + (v ⊗ . . .⊗ w ⊗ v) .

Pierwszy i drugi czynnik należą do Is z definicji, a trzeci z założenia indukcyjnego. Zatem czwarty
również należy do Ia, co kończy dowód kroku indukcyjnego.

Wniosek. Zachodzi SV ≃ TV⧸Is i
∧
V ≃ TV⧸Ia.

Twierdzenie 20. Niech V będzie przestrzenią wektorową nad K a A algebrą nad K. Niech ι : V →
TV będzie inkluzją. Dla dowolnego homomorfizmu przestrzeni wektorowych f : V → A istnieje
dokładnie jeden homomorfizm algebr F (f) = F : TV → A taki, że F ◦ ι = f .

Dowód. Definiujemy szukany homomorfizm na tensorach prostych: dla v1⊗ . . .⊗vk ∈ V ⊗k ustalamy
F (v1 ⊗ . . .⊗ vk) = f (v1) . . . f (vn). Do tego F (1) = 1. To odwzorowanie oczywiście spełnia żądane
własności, a konieczna równość F (v) = f (v) dla v ∈ V ⊗1 implikuje, że odwzorowanie to jest
jedyne.

Wniosek. Niech V,W będą przestrzeniami wektorowymi nad K. Homomorfizm f : V → W indukuje
homomorfizm Tf : TV → TW . Wskazaliśmy więc funktor T• : Vect → Alg.

Dowód. Niech f̃ = ι ◦ f : V → TW , gdzie ι : W → TW jest inkluzją. Szukanym homomorfizmem
jest Tf = F

(
f̃
)
.

Twierdzenie 21. Niech V będzie przestrzenią wektorową nad K a A algebrą nad K. Niech ι : V → SV
będzie inkluzją. Dla dowolnego homomorfizmu przestrzeni wektorowych f : V → A takiego, że
f (v) f (w) = f (w) f (v) istnieje dokładnie jeden homomorfizm algebr F (f) = F : SV → A taki, że
F ◦ ι = f .

Dowód. Wiemy, że istnieje odpowiednie odwzorowanie F̃ : TV → A, a z założenia faktoryzuje się
ono przez iloraz.

Uwaga. Niech ComAlg będzie kategorią algebr przemiennych. Mamy SV ∈ ComAlg. Z tego twier-
dzenia wynika, że jeśli A jest algebrą przemienną, to odwzorowanie liniowe f : V → A rozszerza się
do morfizmu algebr przemiennych F : SV → A.

Twierdzenie 22. Niech V będzie przestrzenią wektorową nad K a A algebrą nad K. Niech ι : V →∧
V będzie inkluzją. Dla dowolnego homomorfizmu przestrzeni wektorowych f : V → A takiego, że

f (v)
2
= 0 istnieje dokładnie jeden homomorfizm algebr F (f) = F :

∧
V → A taki, że F ◦ ι = f .

Dowód. Wiemy, że istnieje odpowiednie odwzorowanie F̃ : TV → A, a z założenia faktoryzuje się
ono przez iloraz.

Uwaga. Wskazaliśmy pewne funktory S• : Vect → Alg i
∧

• : Vect → Alg.

Definicja 43. Algebra z gradacją R to algebra wraz z rozkładem na sumę prostą R =
⊕∞

i=0 Ri

taką, że {Ri}i∈N są takimi algebrami, że Ri +Ri ⊆ Ri oraz RmRn ⊆ Rm+n. Zazwyczaj zakładamy
R0 = K (inkluzja K ⊆ R0 wynika z definicji). Dla r ∈ R przez deg r ∈ N oznaczamy liczbę taką, że
r ∈ Rdeg r.

Algebrę z gradacją R nazywamy przemienną z dokładnością do gradacji (graded-commutative), gdy
zachodzi rs = (−1)

deg r·deg s
sr dla r, s ∈ R.

Uwaga. Algebry TV , SV i
∧
V mają naturalne struktury algebr z gradacją.
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Twierdzenie 23. Algebra z gradacją
∧
V jest przemienna z dokładnością do gradacji.

Dowód. Weźmy elementy proste α = v1 ∧ . . . ∧ vp i β = w1 ∧ . . . ∧ wq. Mamy

α ∧ β = v1 ∧ . . . ∧ vp ∧ w1 ∧ . . . ∧ wq = (−1)
p
w1 ∧ v1 ∧ . . . ∧ vp ∧ w2 ∧ . . . ∧ wq =

= . . . = (−1)
pq

w1 ∧ . . . ∧ wq ∧ v1 ∧ . . . ∧ vp = (−1)
pq

β ∧ α,

gdzie równości wynikają z wielokrotnego zastosowania równości v ∧ w = −w ∧ v.

9. Geometria 2026-01-16

Definicja 44. Przestrzenią afiniczną nazywamy parę
(
A,

−→
A
)
, gdzie A jest zbiorem a

−→
A jest prze-

strzenią wektorową z działaniem A ∋ a → a + v ∈ A dla v ∈
−→
A a do tego dla każdego a ∈ A

odwzorowanie
−→
A ∋ v → a+ v ∈ A jest bijekcją.

Notacja. Przestrzeń afiniczną wymiaru n nad K (wyznaczoną z dokładnością do izomorfizmu) ozna-
czamy An

K.

Definicja 45. Przestrzeń rzutowa Pn
K to zbiór Kn+1 \ {0}⧸∼, gdzie v ∼ w ⇐⇒ ∃λ∈K∗ v = λw.

Twierdzenie 24. Pn
K parametryzuje proste w Kn+1, to znaczy istnieje naturalna bijekcja między

tymi zbiorami.

Dowód. Odwzorowanie Pn
K ∋ [v] → K · v jest surjekcją, a jeśli K · v = K · w, to v ∼ w.

Notacja (Współrzędne rzutowe). Punkt [v] ∈ Pn
K możemy rozpatrzeć w bazie Kn+1 i zapisać jako

[v0 : v1 : . . . : vn], gdzie [v0 : . . . : vn] = [λv0 : . . . : λv1] dla λ ∈ K∗.

Twierdzenie 25. Zachodzi Pn
K = An

K ⊔ Pn−1
K = An

K ⊔ . . . ⊔ A0
K.

Dowód. Wystarczy udowodnić pierwszą równość, druga wynika z indukcji.

Dokonujemy podziału Pn
K = {[v0 : . . . : vn] ∈ Pn

K : vn = 0} ⊔ {[v0 : . . . : vn] ∈ Pn
K : vn ̸= 0}. Pierw-

szy zbiór jest izomorficzny z Pn−1
K , bo możemy zignorować ostatnią współrzędną. Możemy ustalić

skalowania elementów drugiego zbioru tak, by ich ostatnia współrzędna wynosiła 1. Wtedy mo-
żemy je traktować jak n-krotki elementów K (nie zważając na relację równoważności, bo ustalamy
reprezentanta, dla którego ostatnia współrzędna to 1). Takie krotki mają naturalną strukturę prze-
strzeni afinicznej An

K, gdzie dodawania wektorów polega na dodaniu do siebie kolejnych elementów
w krotce.

Twierdzenie 26. Niech K ∈ {R,C}. Wtedy przestrzeń Pn
K z topologią ilorazową jest zwarta.

Dowód. Dla każdego v ∈ Kn+1 \ {0} istnieje ṽ ∈ Kn+1 takie, że [v] = [ṽ] i ∥ṽ∥ = 1. Zatem
rzutowanie Sn ∈ v → [v] ∈ Pn

K jest ciągłą surjekcją. Ponieważ Sn jest zwarta, to Pn
K jest zwarta jako

obraz przestrzeni zwartej w funkcji ciągłej.

Przykład. Płaszczyzną Fano nazywamy przestrzeń rzutową P2
F2

. Wygląda ona jak na rysunku poni-
żej.
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Definicja 46. Zbiorem miejsc zerowych wielomianu f ∈ K [T1, . . . , Tn] w przestrzeni rzutowej na-
zywamy zbiór {x ∈ An : f (x1, . . . , xn) = 0}. Oznaczamy go zazwyczaj V (f). Zauważmy, że usta-
lenie środka układu współrzędnych a ∈ An zadaje izomorfizm An ≃ Kn, więc ma sens zapis
x = (x1, . . . , xn).

Zbiory algebraiczne to zbiory postaci V (f1, . . . , fk) =
{
x ∈ An : ∀i∈[k] fi (x1, . . . , xn) = 0

}
.

Dla g ∈ ⟨f1, . . . , fk⟩ (ideał generowany przez wielomiany) mamy g (x) = 0 dla x ∈ V (f1, . . . , fk).
Dla ideału I ⊆ K [T1, . . . , Tn] definiujemy V (I) = {x ∈ An : ∀f∈I f (x) = 0}. Z kolei V ⊆ An zadaje
ideał I (V ) = {f ∈ K [T1, . . . , Tn] : ∀x∈V f (x) = 0}.

Pomysł. Geometria algebraiczna bada zbiory algebraiczne poprzez badanie ideałów przez nie gene-
rowanych.

Przykład. Wielomian x2+y2−1 definiuje zbiór
{
x ∈ An : x2

1 + x2
2 = 1

}
, który nad R jest okręgiem.

Definicja 47. Zbiór algebraiczny, którego nie można zapisać jako (nietrywialną) sumę zbiorów al-
gebraicznych nazywamy rozmaitością algebraiczną. Rozmaitości algebraiczne mogą być rozmaito-
ściami topologicznymi (nazywamy je wtedy nieosobliwymi), ale nie muszą.

Definicja 48. Wielomian f (T0, . . . , Tn) nazywamy jednorodnym, jeśli jest postaci f (T0, . . . , Tn) =∑
a0,...,an

a0+...+an=d
αa0,...,an

T a0
0 . . . T an

n .

Propozycja 16. Dla wielomianu jednorodnego f mamy f (λT0, . . . , λTn) = λdf (T0, . . . , Tn). Zatem
f (λT0, . . . , λTn) = 0 ⇐⇒ f (T0, . . . , Tn) = 0.

Definicja 49. Zbiór algebraiczny w Pn to zbiór postaci
{
x ∈ Pn : ∀i∈[k] fi (x0, . . . , xn) = 0

}
, gdzie

f1, . . . , fk są wielomianami jednorodnymi.

Definicja 50. Pierścień K [T0, . . . , Tn] =
⊕∞

d=0 K [T0, . . . , Tn]d ma naturalną strukturę pierścienia
z gradacją. Ideał I ⊆ K [T0, . . . , Tn] nazywamy jednorodnym, gdy dla każdego

∑N
d=0 fd = f ∈ I

mamy fd ∈ I dla wszystkich d.

Uwaga. Mamy zanurzenie An ↪→ Pn zadane przez (x1, . . . , xn) → [1 : x1 : . . . : xn]. Przekształca ono
zbiór algebraiczny V zadany wielomianem f na zbiór algebraiczny powstały z f poprzez domnożenie
składników f przez nową zmienną x0 tak, by wynikowy wielomian był jednorodny.

Przykład. Okrąg x2 + y2 = 1 w A2 ma odpowiadający sobie zbiór x2 + y2 = z2 w P2. Możemy
ograniczyć ten zbiór do A2 ↪→ P2 zadanego przez y = 1. Otrzymujemy x2 + 1 = z2. Ten zbiór jest
hiperbolą. Zatem zależnie od rozważanej podprzestrzeni ten sam zbiór może wyglądać różnie.

Definicja 51. Niech V będzie przestrzenią wektorową o wymiarze n. Rodzinę

Gr (n, k) = {L ≤ V : dimL = k}

nazywamy grassmanianem.

Uwaga. Chcemy w jakiś sposób sparametryzować Gr (n, k). Dla k = 1 odpowiednią parametryzacją
jest przestrzeń rzutową.

Ustalmy L ∈ Gr (n, k). Niech w1, . . . , wn będzie bazą L. Definiujemy odwzorowanie Gr (n, k) ∋ L →
[w1 ∧ . . . ∧ wk] ∈ P

(∧k
V
)
. Zachodzi span {w1, . . . , wk} = span {w′

1, . . . , w
′
n} ⇐⇒ w1 ∧ . . .∧wk =

λw′
1 ∧ . . . ∧ w′

k dla λ ∈ K∗. Zatem to odwzorowanie jest poprawnie określone i jest iniekcją.

Mając zadane x = [w1 ∧ . . . ∧ wk] ∈ P
(∧k

V
)

chcemy zapisać ten punkt we współrzędnych rzu-
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towych
[
xi1...ik : xi′1...i

′
n
: . . .

]
. Możemy rozważyć macierz W =

[
w1 . . . wk

]
o wymiarach n× k.

Okazuje się, że xi1...ik jest równy minorowi W na wierszach i1, . . . , ik.

W ten sposób możemy łatwo znajdować współrzędne punktów płaszczyzny rzutowej odpowiadające
elementom grassmanianu. Tak wyznaczone współrzędne nazywamy współrzędnymi Plückera.

Twierdzenie 27 (Relacje Plückera). Dla 1 ≤ i1 < i2 < . . . < ik−1 ≤ n i 1 ≤ j1 < j2 < . . . < jk+1 ≤ n

zachodzi
∑k+1

t=1 (−1)
t
xi1...ik−1jt · xj1...ĵt...jk+1

= 0, gdzie ĵt oznacza pominięcie jt, a w pierwszym
czynniku musimy przesunąć jt w odpowiednie miejsce (by ciąg był rosnący) i każde przesunięcie o
jeden indeks zmienia znak.

Przykład. Dla k = 2, n = 4 oraz j = (1, 3, 4), i = 2 mamy x1,2x3,4 + x2,3x1,4 − x2,4x1,3 = 0.

Uwaga. Okazuje się, że zbiór algebraiczny zdefiniowany przez relacje Plückera jest dokładnie gras-
smanianem.
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