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1. Wstęp do analizy wielu zmiennych
2025-10-02

Notacja. Przez (E, a) będziemy oznaczać dowolne otoczenie a ∈ E w przestrzeni E.

Twierdzenie 1 (Oryginalne Darboux). Niech F : (a, b) → R będzie różniczkowalna, −∞ ≤ a < b ≤
+∞. Niech f = F ′ i a < u < v < b oraz niech y0 będzie ściśle pomiędzy f (u) i f (v). Istnieje
t0 ∈ (u, v) takie, że f (t0) = y0.

Dowód. Rozważmy funkcję g (t) = F (t) − ty0, która jest różniczkowalna i ma pochodną g′ (t) =
f (t) − y0. Jest ona ciągła, więc osiąga kresy na [u, v]. Jeśli ekstremum lokalne jest w środku tego
przedziału, to pochodna się zeruje i mamy to, co chcemy.

Załóżmy, że f (u) < f (v). Mamy g′ (u) < 0, g′ (v) > 0. Z ilorazu różnicowego g (t) < g (u) dla
t ∈ (u, u+ ε) oraz g (t) < g (v) dla t ∈ (v − ε, v) przy pewnym małym ε. Zatem minimum lokalne
jest w (u, v). Dla f (u) > f (v) analogiczny argument daje maksimum.

Uwaga. Funkcja f nie musi być ciągła, ale np. nie może mieć nieciągłości skokowych.

Propozycja 1. Niech E będzie przestrzenią Banacha nad R, a < b w R, f : [a, b] → E będzie
n-krotnie różniczkowalna (dla n = 0 chodzi o ciągłość, na końcach patrzymy na pochodne jed-
nostronne). Istnieje F : R → E taka, że F (k)|[a,b] = f (k) dla k ∈ {0, . . . , n} oraz F |R\[a,b] jest
analityczna.

Dowód. Ustalamy

Fa (t) = f (a) + f ′+ (a) (t− a) + 1

2
f ′′+ (t− a)2 + . . .+

1

n!
f
(n)
+ (a) (t− a)n

i tak rozszerzamy z lewej strony, z prawej analogicznie. Ta funkcja jest wielomianem i łatwo spraw-
dzić, że pochodne się zgadzają.

Uwaga. W przypadku wielu zmiennych jest dużo trudniej, bo zmienia się geometria dziedziny (nie
mamy linii z dwoma końcami).

Uwaga. Przy definiowaniu pochodnych funkcji jednej zmiennej wykorzystywaliśmy strukturę ciała
dziedziny (dzielenie). Dla funkcji wielu zmiennych będziemy potrzebowali innej definicji. Pochodna
bada zachowanie funkcji w punkcie poprzez porównanie przyrostu wartości do przyrostu argumentu.
W praktyce szukamy odwzorowania liniowego, które dobrze przybliża przyrost funkcji w punkcie.

Uwaga. Dla przestrzeni skończenie wymiarowej Km i funkcji f : (Km, a) → F mamy różniczkę w
punkcie a da f ∈ L (Km, F ). Po ustaleniu bazy kanonicznej e1, . . . , em mamy

da f (v) = da f

(
m∑
i=1

viei

)
=

m∑
i=1

vi da f (ei) = ⟨v, (da f (e1) , . . . ,da f (em))⟩ ,

jeśli rozważamy F = K i standardowy iloczyn skalarny. Stosujemy notację grad f (a) = ∇f (a) =(
∂f
∂x1

(a) , . . . , ∂f
∂xm

(a)
)
∈ Km (gdzie ∂f

∂xi
(a) = da f (ei)) i nazywamy taki wektor gradientem, a jego

elementy pochodnymi cząstkowymi. W przypadku K = R niezerowy gradient wyznacza kierunek
najszybszego wzrostu funkcji f w punkcie a.

Uwaga. Różniczkowanie f : (Km, a)→ Kn sprowadza się do różniczkowania jej składowych.

Uwaga. Łatwo pokazać, że ∂f
∂xj

(a) = limt→0
f(a+tej)−f(a)

t , co odpowiada pochodnej kierunkowej f
w kierunku ej , a więc pochodnej funkcji jednej zmiennej (K, 0) ∋ t→ f (a+ tej) zwanej przekrojem
f w kierunku ej .
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Uwaga. Istnienie różniczki implikuje istnienie pochodnych cząstkowych, ale implikacja w drugą
stronę już nie zachodzi (choć pochodne cząstkowe dają jedynego możliwego kandydata na różniczkę,
bo jest nim L (v) =

∑ ∂f
∂xj

(a) vj).

Notacja. Dla odwzorowania liniowego L często zamiast L (x) piszemy L.x lub Lx.

Przykład. Niech L ∈ L (Rn,R), co jest równoważne istnieniu a ∈ Rn takiego, że L (x) = ⟨x, a⟩.
Wtedy ∥L∥f = ∥a∥, co wynika z nierówności Cauchy’ego-Schwarza, bo |⟨x, a⟩| ≤ ∥x∥ ∥a∥, a podsta-
wiając x = a

∥a∥ dostajemy L (x) = ∥x∥ ∥a∥. Z pierwszego faktu wynika ∥L∥f ≤ ∥a∥, a z drugiego
∥L∥f ≥ ∥a∥.

2. Pochodne między przestrzeniami Banacha
2025-10-06

Twierdzenie 2 (Banach). Niech E,F będą przestrzeniami Banacha, f : E → F izomorfizmem
liniowym i ciągłym. Wtedy F ∈ Isom (E,F ).

Uwaga. Dalej będziemy rozważać funkcje między przestrzeniami Banacha, mimo, że zupełność nie
zawsze będzie potrzebna. Będziemy rozważać przestrzenie Banacha E,F nad K, zbiór A ⊆ E,
funkcję f : A→ F i a ∈ A.

Definicja 1. Odwzorowanie f jest różniczkowalne w a, gdy a ∈ intA oraz istnieje funkcja L ∈
L (E,F ) taka, że

∀ε>0 ∃r>0 (∥h∥ < r ∧ a+ h ∈ A) =⇒ (∥f (a+ h)− f (a)− L (h)∥ ≤ ε ∥h∥) .

Warunek a ∈ intA oznacza, że istnieją odpowiednie h. Odwzorowanie L nazywamy różniczką
(Frécheta) funkcji f w punkcie a i oznaczamy ją na jeden ze sposobów L = da f = f ′ (a) =
Da f = Df (a) = Ta f = ∂f (a).

Wartość różniczki na argumencie h oznaczamy da f (h) lub f ′ (a) .h.

Uwaga. Przy pochodnej Cantora zamiast ciągłości L żąda się ciągłości f . Te definicje są równo-
ważne.

Propozycja 2. Jeśli różniczka istnieje, to jest wyznaczona jednoznacznie.

Dowód. Jeśli L1, L2 są różniczkami f w a, to

∥L1.h− L2.h∥ ≤ ∥L1.h− f (a+ h) + f (a)∥+ ∥−L2.h+ f (a+ h)− f (a)∥ ≤ 2ε ∥h∥ ,

gdzie nierówności zachodzą dla ∥h∥ ≤ r dla pewnego r.

Dla x ∈ E \ {0} i h = r x
∥x∥ mamy

∥∥∥(L1 − L2) .
(
r x
∥x∥

)∥∥∥ ≤ 2ε
∥∥∥r x

∥x∥

∥∥∥, czyli ∥(L1 − L2) .x∥ ≤ 2ε ∥x∥,
skąd L1 = L2.

Propozycja 3. Jeśli f jest różniczkowalna w a, to jest ciągła w a.

Dowód.

∥f (x)− f (a)± da f (x− a)∥ ≤ ε ∥x− a∥+ ∥da f (x− a)∥ ≤ ε ∥x− a∥+ ∥da f∥ ∥x− a∥ .

Propozycja 4. Różniczkowalność i postać różniczki nie zależy od wyboru normy – możemy ją za-
stąpić przez dowolną normę równoważną.
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Definicja 2 (Notacja Bachmanna-Landaua). Rozważmy przestrzeń topologiczną (X, τ) i punkt a ∈
X (dla ustalenia uwagi). Niech F,G będą przestrzeniami unormowanymi (być może nad różnymi
ciałami) i A,B ⊆ X oraz a ∈ int (A ∩B), f ∈ FA, g ∈ GB .

Piszemy f = O (g) (f jest O duże od g w punkcie a), jeśli

∃M>0 ∃τ∋U∋a:U⊆A∩B ∀x∈U ∥f (x)∥ ≤M ∥g (x)∥ .

Piszemy f = o (g) (f jest o małe od g w punkcie a), jeśli

∀ε>0 ∃τ∋U∋a:U⊆A∩B ∀x∈U ∥f (x)∥ ≤ ε ∥g (x)∥ .

Uwaga. Jeśli f = o (g), to musi być f (a) = 0.

Propozycja 5.

f = o (g) ⇐⇒ ∃ξ:A∩B→F ξ (a) = 0, f (x) = ∥g (x)∥ ξ (x) oraz ξ jest ciągłe w a.

Dowód. ( =⇒ ) Definiujemy

ξ (x) =

{
0, x = a ∨ g (x) = 0
f(x)

∥g(x)∥ , g (x) ̸= 0
.

(⇐= ) Z definicji ciągłości.

Definicja 3. fi ∈ FAi : i = 1, 2, g ∈ GB , a ∈ int (A1 ∩A2 ∩B). Wtedy f1−f2 jest dobrze określona
na A1 ∩A2 = A. Piszemy f2 = f1 +O (g), jeśli f2 − f1 = O (g) i analogicznie dla o.

Uwaga. W badaniu różniczkowalności rozważamy translacje w E, a te są homeomorfizmami, więc
a ∈ intA =⇒ 0 ∈ int (A− a) i funkcja h→ f (a+ h) jest dobrze określona dla A− a.

Warunek z definicji różniczkowalności można zapisać jako

f (a+ h)− f (a)− L.h = o (h) (w zerze).

Definicja 4. Niech f ∈ FA, g ∈ FB , A,B ⊆ E. f i g są styczne w a (f ∼a g), jeśli a ∈ int (A ∩B) i

∀ε>0 ∃r>0 (∥x− a∥ < r, x ∈ A ∩B) =⇒ (∥f (x)− g (x)∥ ≤ ε ∥x− a∥) ,

czyli (f − g) (x) = o (x− a).

Propozycja 6. Różniczkowalność f z różniczką L jest równoważna obu z następujących warunków:

1. f ∼a (E ∋ x→ L (x− a) + f (a) ∈ F ) .

2. L ∼0 ((A− a) ∋ h→ f (a+ h)− f (a) ∈ F ).

Propozycja 7. 1. ∼a jest relacją równoważności na zbiorze {f : A→ F | a ∈ intA}.

2. f ∼a g =⇒ f (a) = g (a).

3. f ∼a g =⇒ (f ciągła w a ⇐⇒ g ciągła w a).

4. f, g liniowe i f ∼a g =⇒ f = g.

5. Styczność nie zmienia się po zamianie normy na równoważną.

Lemat 1. Różniczkowalność jest równoważna istnieniu:

1. ξ : A − a → F takiego, że ξ (0) = 0, ξ ciągłe w 0 oraz dla h ∈ A − a jest f (a+ h) =
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f (a) + L.h+ ξ (h) ∥h∥.

2. η : A→ F takiego, że η (a) = 0, η ciągłe w a oraz dla x ∈ A jest f (x) = f (a) + L. (x− a) +
η (x) ∥x− a∥.

Przykład. 1. f : A→ F stałe ma da f = 0.

2. Dla L ∈ L (E,F ) i f = L|A jest da f = L.

3. Dla E = K f jest różniczkowalne w a z da f.λ = λv dla pewnego v ∈ F wtedy i tylko wtedy,
gdy limx→a

f(x)−f(a)
x−a = v.

Uwaga. Mamy izometrię L (K, F ) ≃ F zadaną poprzez F ∋ v → (K ∋ λ→ λv ∈ F ) ∈ L (K, F ).
Daje nam ona zgodność rachunku różniczkowego budowanego teraz z tym zbudowanym już wcze-
śniej.

Definicja 5. Definiujemy A(1) = {a ∈ A | f różniczkowalna w a} ⊆ intA. Odwzorowanie f ′ : A(1) ∋
x→ dx f ∈ L (E,F ) nazywamy odwzorowaniem pochodnym lub po prostu pochodną.

f jest różniczkowalne, jeśli jest różniczkowalne w każdym punkcie swojej dziedziny, czyli A(1) = A
(wtedy A musi być otwarty).

Definicja 6. Odwzorowanie f jest klasy C1, jeśli jest różniczkowalne i odwzorowanie pochodne jest
ciągłe.

Przykład. 1. A ∈ top (E), F : A→ F stałe jest klasy C1 i f ′ ≡ 0 ∈ L (E,F ).

2. L ∈ L (E,F ), A ∈ top (E), f = L|A jest klasy C1 i f ′ ≡ L, czyli f ′ (x) = L dla każdego x.

3. Dla E = K mamy f ′ (a) ∈ F zdefiniowane jako granica ilorazu różnicowego. W nowej definicji
mamy f ′ : A ∋ a → (K ∋ λ→ λf ′ (a) ∈ F ) ∈ L (K, F ), co można utożsamić z f ′ : A ∋ a →
f ′ (a) ∈ F .

Propozycja 8. 1. Jeśli zacieśniamy f do B takiego, że a ∈ intB, to da f = da (f |B).

2. Zacieśnianie funkcji klasy C1 na zbiór otwarty daje funkcję klasy C1.

Uwaga. Przy rozważaniu różniczkowalności f : A → F rozważamy f |intA. Różniczkowalność w
punkcie jest własnością lokalną, zależną tylko od kiełka funkcji w punkcie (klasy równoważności
funkcji, które są równe w pewnym otoczeniu punktu).

3. Własności pochodnej
2025-10-09

Twierdzenie 3. Mamy przestrzenie Banacha E,F,G nad K oraz zbiory A ⊆ E,B ⊆ F i funkcje
f : A→ F różniczkowalną w a oraz g : B → G różniczkowalną w b = f (a) takie, że f (A) ⊆ B. W
takiej sytuacji g ◦ f jest różniczkowalne w a oraz da (g ◦ f) = df(a) g ◦ da f .

Dowód. Mamy a ∈ intA, f (x) = f (a) + da f (x− a) + η (x) ∥x− a∥, gdzie η : A→ F jest ciągła w
a i η (a) = 0.

Podobnie b ∈ intB, g (y) = g (b) + db g (y − b) + ξ (y) ∥y − b∥ dla odpowiedniego ξ.

g (f (x)) = g (f (a)) + df(a) g (f (x)− f (a)) + ξ (f (x)) ∥f (x)− f (a)∥ =
(g ◦ f) (a) + df(a) g (da f (x− a) + η (x) ∥x− a∥) + ξ (f (x)) ∥da f (x− a) + η (x) ∥x− a∥∥ =
(g ◦ f) (a) +

(
df(a) g ◦ da f

)
(x− a)

+ df(a) g (η (x)) ∥x− a∥+ ξ (f (x)) ∥da f (x− a) + η (x) ∥x− a∥∥ .
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Szacujemy dwa ostatnie składniki:∥∥df(a) g (η (x)) ∥x− a∥+ ξ (f (x)) ∥da f (x− a) + η (x) ∥x− a∥∥
∥∥ ≤(∥∥df(a) g∥∥ ∥η (x)∥+ ∥ξ (f (x))∥ (∥da f∥+ ∥η (x)∥)) ∥x− a∥ .

Składniki w nawiasie dążą do 0 gdy x→ a, więc mamy to, co chcemy.

Twierdzenie 4. Mamy przestrzenie Banacha E,F,G nad K oraz zbiory A ⊆ E,B ⊆ F otwarte i
funkcje f : A→ F , g : B → G klasy C1 takie, że f (A) ⊆ B. W takiej sytuacji g ◦ f jest klasy C1.

Dowód. Wiemy, że (g ◦ f)′ : A ∋ x → df(x) g ◦ dx f ∈ L (E,G). Ta funkcja jest ciągiem złożeń
x→ (dx f, f (x))→

(
dx f, df(x) g

)
→ df(x) g ◦dx f . Najpierw robimy zestawienie funkcji ciągłych f ′

i f , które jest ciągłe, potem stosujemy ciągłą funkcję g′, a na końcu składamy te funkcje. Wszystkie
te operacje zachowują ciągłość.

Twierdzenie 5. Niech E,F będą przestrzeniami Banacha nad K, A ⊆ E, fi : A → F dla i ∈
{1, . . . ,m}, α1, . . . , αm ∈ K. Jeśli f1, . . . , fm są różniczkowalne w a ∈ A, to

∑m
i=1 αifi jest różnicz-

kowalne w a oraz da (
∑m

i=1 αifi) =
∑m

i=1 αi da fi. Jeśli te funkcje są klasy C1, to ich kombinacja
liniowa też.
Dowód. Mamy fi (x) = fi (a) + da fi (x− a) + ∥x− a∥ ηi (x), przemnażamy przez αi, sumujemy i
mamy.

Mamy (
∑m

i=1 αifi)
′
=
∑m

i=1 αif
′
i , co jest ciągłe, gdy f ′i są ciągłe, więc mamy klasę C1.

Twierdzenie 6. Niech E,F1, . . . , Fm będą przestrzeniami Banacha nad K, m ≥ 2, A ⊆ E. Niech
F = F1 × . . .× Fm, f = (f1, . . . , fm) : A→ F . W takiej sytuacji f jest różniczkowalne w a wtedy i
tylko wtedy, gdy f1, . . . , fm są różniczkowalne w a. Wówczas da f = (da f1, . . . ,da fm). Dodatkowo
analogiczna równoważność zachodzi dla bycia klasy C1.
Dowód. Niech pi : F → Fi będzie rzutowaniem, a vi : Fi → F zanurzeniem. Są one klasy C1 i
liniowe.

( =⇒ ) Mamy fi = pi ◦ f , więc mamy tezę z różniczkowalności pi.

(⇐= ) Mamy f =
∑m

i=1 vi ◦ fi, teza wynika z różniczkowalności vi i twierdzeń o złożeniach i
kombinacjach liniowych. Z nich również mamy

da f =

m∑
i=1

da (vi ◦ fi) =
m∑
i=1

dfi(a) vi ◦ da fi =
m∑
i=1

vi ◦ da fi = (da fi)i∈[m] ,

bo vi jest liniowe, więc jest swoją różniczką.

Własność z klasą C1 wynika z klasy C1 rzutowań i zanurzeń, bo dla φi : L (E,Fi) ∋ l → vi ◦ l ∈
L (E,F1 × . . .× Fm) mamy f ′ =

∑m
i=1 φi ◦ f ′i .

Uwaga. W powyższym twierdzeniu dostajemy równość f ′ (a) = (f ′1 (a) , . . . , f
′
m (a)), ale nie ma

sensu zapis f ′ = (f ′1, . . . , f
′
m), bo te odwzorowania mają inne typy.

Twierdzenie 7. Niech E1, . . . , Em, F1, . . . , Fm dla m ≥ 2 będą przestrzeniami Banacha nad K, Ai ⊆
Ei dla każdego i. Niech fi : Ai → Fi, a = (a1, . . . , am) ∈ A1×. . .×Am oraz niech E = E1×. . .×Em,
F = F1 × . . . × Fm, f = f1 × . . . × fm. W takiej sytuacji f jest różniczkowalne w a wtedy i tylko
wtedy, gdy f1, . . . , fm są różniczkowalne w ai. Wówczas da f = da f1 × . . . × da fm. Dodatkowo
analogiczna równoważność zachodzi dla bycia klasy C1.
Dowód. Niech pi, qi będą rzutowaniami odpowiednio z E i F , a ui, vi zanurzeniami.

( =⇒ ) Z różniczkowalności f w punkcie a mamy a ∈ intA, więc ai ∈ intAi. Kładziemy ãi =
(a1, . . . , ai−1, 0, ai+1, . . . , am) i mamy fi = qi◦f ◦(ãi + ui|Ai). Twierdzenie o złożeniu kończy dowód.

(⇐= ) Mamy ai ∈ intAi dla każdego i, więc a ∈ intA. Zapisujemy f =
∑m

i=1 vi ◦ fi ◦ pi|A. Z tego
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wynika różniczkowalność i postać różniczki:

da f =

m∑
i=1

da (vi ◦ fi ◦ pi|A) =
m∑
i=1

dfi(ai) vi ◦ dai
fi ◦ da (pi|A) =

m∑
i=1

vi ◦ dai
fi ◦ pi

= da1 f1 × . . .× dam fm.

4. Różniczkowanie szczególnych odwzorowań
2025-10-09

Twierdzenie 8. Niech E1, E2, F będą przestrzeniami Banacha nad K i niech Φ ∈ L (E1, E2;F ).
Dla (a1, a2) , (h1, h2) ∈ E1 × E2 funkcja Φ jest różniczkowalna w (a1, a2) oraz d(a1,a2) Φ. (h1, h2) =
Φ (a1, h2) + Φ (h1, a2). Funkcja Φ jest też klasy C1.
Dowód.

∥Φ (a1 + h1, a2 + h2)− Φ (a1, a2)− Φ (a1, h2)− Φ (h1, a2)∥ = ∥Φ (h1, h2)∥ ≤ ∥Φ∥ ∥h1∥ ∥h2∥

≤ ∥Φ∥ (∥h1∥+ ∥h2∥)2 ,

gdzie pierwsze przejście to rozpisanie pierwszego wyrazu z dwuliniowości. Pochodna Φ′ jest sumą
dwóch odwzorowań liniowych:

L1 : E1 × E2 ∋ (a1, a2)→ ((h1, h2)→ Φ (a1, h2)) ∈ L (E1 × E2, F ) ,

L2 : E1 × E2 ∋ (a1, a2)→ ((h1, h2)→ Φ (h1, a2)) ∈ L (E1 × E2, F ) .

Łatwo sprawdzić ich ciągłość, np. ∥L1 (a1, a2)∥ = sup∥(h1,h2)∥=1 ∥Φ (a1, h2)∥ ≤ ∥Φ∥ (∥a1∥+ ∥a2∥).
Zatem Φ′ jest ciągłe, czyli Φ jest klasy C1.

Uwaga. Zauważmy, że w powyższym twierdzeniu Φ jest dwuliniowe, a jego różniczka jest liniowa ze
względu na całą parę argumentów.

Twierdzenie 9. Niech E,E1, E2, F będą przestrzeniami Banacha nad K. Niech A ⊆ E i f : A →
E1, g : A→ E2, Φ ∈ L (E1, E2;F ), φ (x) = Φ (f (x) , g (x)) dla x ∈ A. Jeśli f i g są różniczkowalne
w a ∈ A, to φ również oraz da φ.h = Φ(f (a) ,da g.h)+Φ (da f.h, g (a)). To samo zachodzi dla bycia
klasy C1.
Dowód. φ = Φ ◦ (f, g), skąd wynika teza na podstawie twierdzenia o zestawianiu, odwzorowaniu
dwuliniowym i składaniu. Pozostaje przeliczyć:

da φ.h = d(f(a),g(a)) Φ ◦ (da f, da g) .h = Φ(f (a) ,da g.h) + Φ (da g.h, g (a)) .

Uwaga. Jeśli E = E1 = E2 = F = K, a Φ (x, y) = xy jest mnożeniem, to mamy (fg)
′
(a) =

f ′ (a) g (a) + f (a) g′ (a).

Twierdzenie 10. Niech A będzie algebrą Banacha z jedynką 1A, niekoniecznie przemienną. Przez
G (A) oznaczamy grupę elementów odwracalnych w A. Rozważamy odwzorowanie ξ : G (A) ∋ x→
x−1 ∈ G (A), które jest homeomorfizmem. W powyższej sytuacji ξ jest klasy C1, dla a ∈ G (A) , h ∈ A
mamy da ξ.h = −a−1 · h · a−1.

Dowód. Zakładamy, że A ̸= {0}. Odwzorowanie h → −a−1 · h · a−1 jest liniowe, ciągłość mamy
z
∥∥−a−1ha−1

∥∥ ≤ ∥∥a−1
∥∥2 ∥h∥. Wiemy, że dla a ∈ G (A) mamy K

(
a, 1

∥a−1∥

)
⊆ G (A), więc dla
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h ∈ A : ∥h∥ < 1
∥a−1∥ mamy a+ h ∈ G (A) i

∥∥ξ (a+ h)− ξ (a) + a−1ha−1
∥∥ =

∥∥∥(a+ h)
−1 (

1A − (a+ h) a−1
)
+ a−1ha−1

∥∥∥ =∥∥∥− (a+ h)
−1
ha−1 + a−1ha−1

∥∥∥ =
∥∥∥(a−1 − (a+ h)

−1
)
ha−1

∥∥∥ =
∥∥(ξ (a)− ξ (a+ h))ha−1

∥∥ ≤
∥ξ (a)− ξ (a+ h)∥ ∥h∥

∥∥a−1
∥∥ .

Z ciągłości ξ to wyrażenie jest odpowiednio ograniczone. Rozważmy odwzorowanie dwuliniowe i
ciągłe Φ : A×A ∋ (x, y)→ (A ∋ h→ xhy) ∈ L (A,A), gdzie ciągłość wynika z ∥Φ (x, y)∥ ≤ ∥x∥ ∥y∥.
Mamy ξ′ = Φ ◦ (−ξ, ξ), skąd wynika ciągłość ξ′.

Twierdzenie 11. Niech E,F będą przestrzeniami Banacha nad K takimi, że Isom (E,F ) ̸= ∅. Niech
η : Isom (E,F ) ∋ g → g−1 ∈ Isom (F,E). W takiej sytuacji η jest klasy C1 oraz dla g ∈ Isom (E,F ),
h ∈ L (E,F ) mamy dg η.h = −g−1 ◦ h ◦ g−1.

Dowód. Ustalmy φ ∈ Isom (F,E) i oznaczmy φ⋆ : L (E,F ) ∋ L → L ◦ φ ∈ L (F, F ) oraz φ⋆ :
L (F, F ) ∋ L → φ ◦ L ∈ L (F,E). Oba te odwzorowania są liniowe i ciągłe (ciągłość z ∥φ⋆ (L)∥ =
∥L ◦ φ∥ ≤ ∥L∥ ∥φ∥ i analogicznie dla φ⋆), a więc są klasy C1.

Mamy η = φ⋆ ◦ ξ ◦ φ⋆|Isom(E,F ), co jest złożeniem odwzorowań klasy C1. Liczymy:

dg η.h = dξ(φ⋆(g)) φ
⋆ ◦ dφ⋆(g) ξ ◦ dg

(
φ⋆|Isom(E,F )

)
.h = φ⋆ (dg◦φ ξ (φ⋆ (h))) =

φ ◦
(
− (g ◦ φ)−1 ◦ φ⋆ (h) ◦ (g ◦ φ)−1

)
= −g−1 ◦ h ◦ g−1.

Uwaga. Zbiór Isom (E,F ) nie jest przestrzenią wektorową, zatem dg η jest odwzorowaniem między
nadprzestrzeniami L (E,F ) i L (F,E) i dlatego h ∈ L (E,F ) nie musi być izomorfizmem.

Przykład. 1. Dla A = K jest ξ : K \ {0} ∋ z → 1
z ∈ K, jest ξ′ (z) .w = − 1

zw
1
z = − w

z2 .

2. Dla A będącego przemienną algebrą Banacha mamy funkcję exp (x) =
∑∞

n=0
1
n!x

n. Zachodzi
exp′ (a) .h = exp (a) · h.

Dowód.

∥exp (a+ h)− exp (a)− exp (a) · h∥ = ∥exp (a) exp (h)− exp (a)− exp (a) · h∥ ≤

∥exp (a)∥ ∥exp (h)− 1A − h∥ ≤ ∥exp (a)∥

∥∥∥∥∥
∞∑

n=2

1

n!
hn−2

∥∥∥∥∥ ∥h∥2 ≤ ∥exp (a)∥ ∥h∥2
∞∑

n=2

1

n!
∥h∥n−2 ≤

e ∥exp (a)∥ ∥h∥2 ,

gdzie ostatnia nierówność zachodzi dla ∥h∥ < 1.

5. Pochodne kierunkowe 2025-10-13

Definicja 7. Niech E,F będą przestrzeniami Banacha nad K, A ⊆ E, a ∈ A, f : A→ F . Ustalamy
wektor (kierunek) v ∈ E \ {0}. Przekrojem zbioru A w punkcie a w kierunku v nazywamy zbiór
Aa,v = {t ∈ K : a+ tv ∈ A}. Przekrojem funkcji f w punkcie a w kierunku v nazywamy funkcję
fa,v : Aa,v ∋ t→ f (a+ tv) ∈ F .

Definicja 8. Jeśli 0 ∈ intAa,v oraz istnieje limt→0
f(a+tv)−f(a)

t ∈ F , to granicę tę będziemy nazywać
pochodną kierunkową f w a w kierunku v i oznaczać ∂f

∂v (a) lub f ′v (a).

Jest jasne, że ∂f
∂v (a) = f ′a,v (0) =

d
dt (t→ f (a+ tv))

∣∣
t=0

.
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Propozycja 9. Niech E,F będą przestrzeniami Banacha nad K, A ⊆ E, f : A → F , a ∈ A,
v ∈ E \{0}. Zakładamy, że f jest różniczkowalna w a. W takiej sytuacji istnieje f ′v (a) oraz f ′v (a) =
da f.v.

Dowód. Z a ∈ intA mamy 0 ∈ intAa,v. Mamy fa,v = f (τ (t)), gdzie τ (t) = a + tv jest odwzoro-
waniem afinicznym, dla którego zachodzi dt τ.h = vh. Z twierdzenia o różniczkowaniu złożenia jest
d0 fa,v.h = da f ◦ d0 τ.h = da f (vh) = da f (v)h. Zatem f ′v (a) = da f (v).

Uwaga. Założyliśmy v ̸= 0, ale definicje dają nam Aa,0 = K, fa,0 ≡ f (a) i zachodzi f ′0 (a) = 0 =
da f.0, więc powyższe twierdzenie zachodzi dla v = 0.

Uwaga. Jeśli pochodna kierunkowa ∂f
∂v (a) istnieje, to dla każdego λ ∈ K mamy ∂f

∂λv (a) = λ∂f
∂v (a),

bo limt→0
f(a+tλv)−f(a)

t = λ limt→0
f(a+(tλ)v)−f(a)

tλ . Zatem pochodne kierunkowe wystarczy rozwa-
żać dla v ∈ SE – na sferze jednostkowej.

Uwaga. Z istnienie wszystkich pochodnych kierunkowych nie wynika nawet ciągłość funkcji. Niech
C =

{(
x, x2

)
: x ∈ R

}
i f = χC,R2 − χ{(0,0)},R2 . Ta funkcja przyjmuje wartość 1 na paraboli bez

(0, 0), a poza tym 0. Rozważamy pochodne kierunkowe w (0, 0). W każdym kierunku v mamy
f(0,0),v ≡ 0 w otoczeniu (0, 0) (prosta przecina się z parabolą tylko w jednym punkcie), a nie mamy
ciągłości – można zejść do (0, 0) po paraboli, gdzie f (x) = 1.

Definicja 9. Jeśli dla każdego v ∈ E istnieje ∂f
∂v (a) oraz istnieje L ∈ L (E,F ) takie, że ∂f

∂v (a) =
L (v), to mówimy, że f jest różniczkowalne w sensie Gâteaux w a, a odwzorowanie L (oznaczane
δaf) nazywamy jego różniczką Gâteaux (słabą różniczką). Nie żądamy a ∈ intA, wystarczy nam
0 ∈ intAa,v dla każdego v.

Propozycja 10. 1. δaf istnieje wtedy i tylko wtedy, gdy istnieje L ∈ L (E,F ) takie, że dla
każdego v ∈ SE mamy limt→0

f(a+tv)−f(a)
t = L (v). W takiej sytuacji δaf = L.

2. da f istnieje wtedy i tylko wtedy, gdy istnieje L ∈ L (E,F ) takie, że dla każdego v ∈ SE
mamy limt→0

f(a+tv)−f(a)
t = L (v) oraz ta granica jest jednostajna ze względu na v. W takiej

sytuacji da f = L.

Dowód. Pierwszy punkt: w prawo oczywiste, w drugą stronę bierzemy kierunek w ̸= 0 i rozważamy
v = w

∥w∥ ∈ SE . Wtedy ∂f
∂w (a) = ∥w∥ ∂f

∂v = ∥w∥L (v) = L (w).

Drugi punkt: jednostajność granicy to ∀ε>0 ∃δ>0 ∀v∈SE |t| < δ =⇒
∥∥∥ f(a+tv)−f(a)

t − L (v)
∥∥∥ ≤ ε.

Dla ∥h∥ < δ biorąc v = h
∥h∥ i t = ∥h∥ mamy ∥f (a+ h)− f (a)− L (h)∥ ≤ ε ∥h∥. W drugą stronę dla

v ∈ SE i ∥tv∥ < δ mamy ∥f (a+ tv)− f (a)− L (tv)∥ ≤ ε ∥tv∥ = ε |t|, czyli
∥∥∥ f(a+tv)−f(a)

t − L (v)
∥∥∥ ≤

ε.

Uwaga. W Km mamy kierunki bazy kanonicznej e1, . . . , em, więc dla E = Km piszemy ∂f
∂xi

(a) =
∂f
∂ei

(a) i nazywamy ten napis i-tą pochodną cząstkową. Jeśli istnieje da f ∈ L (Km, F ), to jest ona
wyznaczona przez wartości na bazie, czyli da f (h1, . . . , hm) =

∑m
i=1

∂f
∂xi

(a)hi.

Dla F = K ma to szczególny sens, bo wtedy da f jest kombinacją liniową rzutowań, które są bazą
L (Km,K) = (Km)

∗. Oznaczamy wtedy rzutowanie pi jako dxi i wtedy df =
∑m

i=1
∂f
∂xi

dxi jest
odwzorowaniem pochodnym.

Dla F = K funkcję da f można utożsamić z wektorem pochodnych cząstkowych
(

∂f
∂xi

(a)
)m
i=1
∈ Km

zwanym gradientem f i oznaczanym ∇f (a) lub grad f .

Propozycja 11. Dla funkcji różniczkowalnej f : Ω → R w otwartym Ω ⊆ Rm jeśli ∇f (a) ̸= 0, to
kierunek ∇f(a)

∥∇f(a)∥ ∈ Sm−1 jest kierunkiem największego wzrostu funkcji f w punkcie a ∈ Ω.
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Dowód. Szukamy v ∈ Sm−1 maksymalizującego infinitezymalny przyrost f(a+tv)−f(a)
t , czyli dają-

cego wartość max∥v∥=1
∂f
∂v (a). Mamy ∂f

∂v (a) = da f (v) = ⟨∇f (a) , v⟩ ≤ ∥∇f (a)∥ ∥v∥ = ∥∇f (a)∥.
Maksimum jest osiągane dla v0 = ∇f(a)

∥∇f(a)∥ .

Uwaga. Gdy E = Kn, F = Km i f = (f1, . . . , fm) jest różniczkowalna w a, to da f ∈ L (Kn,Km)
utożsamiamy z macierzą zMm×n (K) zwaną macierzą Jacobiego f w a, będącą macierzą pochodnych
cząstkowych (różniczka jest zestawieniem różniczek, które są wektorami).

da f =
[
da f (e1) . . . da f (en)

]
=


∂f1
∂x1

(a) ∂f1
∂x2

(a) . . . ∂f1
∂xn

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) · · · ∂f2
∂xn

(a)
...

...
. . .

...
∂fm
∂x1

(a) ∂fm
∂x2

(a) . . . ∂fm
∂xn

(a)

 =


∇f1 (a)T

∇f2 (a)T
...

∇fm (a)
T

 .

Mamy da f.h = (da fi (h))
m
i=1 ∈ Km, co jest równe mnożeniu macierzy:

[
∂fi
∂xj

(a)
]
i∈[m]
j∈[n]

· h.

Gdy m = n, to wyznacznik uzyskanej macierzy kwadratowej nazywamy jakobianem f w a i ozna-
czamy go Jac f (a) = det da f .

6. Pochodne cząstkowe
2025-10-16

Definicja 10. Niech E1, . . . , Em, F (m ≥ 2) będą przestrzeniami Banacha nad K, A ⊆ E1×. . .×Em,
a = (a1, . . . , am) ∈ A. Przez ui : Ei → E1× . . .×Em rozumiemy zanurzenie kanoniczne. Oznaczamy
ãi = (a1, . . . , ai−1, 0, ai+1, . . . , am) i ũi = ui + ãi. Niech

Ai = ũ−1
i (A) = {xi ∈ Ei : (a1, . . . , ai−1, xi, ai+1, . . . , am) ∈ A} .

Do tego λi = ũi|Ai
oraz if = f ◦ λi : Ai → F .

Funkcję if nazywamy i-tym odwzorowaniem częściowym f w a. i-tą różniczką cząstkową f w a
nazywamy (o ile istnieje) różniczkę if w punkcie ai i oznaczamy ją ∂f

∂xi
(a) ∈ L (Ei, F ).

Uwaga. Gdy Ei = K, to if ′ (ai) utożsamia się z if ′ (ai) .1 ∈ F , czyli otrzymujemy pochodną
cząstkową (kierunkową w kierunku ei).

Uwaga. W definicji różniczki cząstkowej nie potrzebujemy a ∈ intA, wystarczy ai ∈ intAi. Na przy-

kład f (x, y) =

{
x, y = 0

y2, x = 0
zdefiniowane na A =

{
(x, y) ∈ K2 : xy = 0

}
ma pochodne cząstkowe

w zerze ∂f
∂x (0, 0) = 1 i ∂f

∂y (0, 0) = 0.

Twierdzenie 12. Niech E1, . . . , Em, F (m ≥ 2) będą przestrzeniami Banacha nad K, A ⊆ E1 ×
. . . × Em, a = (a1, . . . , am) ∈ A. Niech pi będzie odpowiednim rzutowaniem kanonicznym, a ui
zanurzeniem. W rozpatrywanej sytuacji jeśli funkcja f jest różniczkowalna w a, to istnieją ∂f

∂xi
(a)

dla i = 1, . . . ,m oraz ∂f
∂xi

(a) = da f ◦ ui i da f =
∑m

i=1
∂f
∂xi

(a) ◦ pi.

Dowód. Z różniczkowalności f w a mamy a ∈ intA, więc ai ∈ intAi dla każdego i. if = f ◦ λi jest
złożeniem odwzorowań różniczkowalnych, mamy dai

if = dλi(ai) f ◦ dai
λi = da f ◦ ui. Do tego

m∑
i=1

∂f

∂xi
(a) ◦ pi =

m∑
i=1

da f ◦ ui ◦ pi = da f ◦
m∑
i=1

ui ◦ pi = da f.
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Uwaga. Z samego istnienia różniczek cząstkowych nie wynika nawet ciągłość f w a, przyjmując

f (x, y) =

{
xy

x2+y2 , (x, y) ̸= (0, 0)

0, (x, y) = (0, 0)
mamy ∂f

∂x (0, 0) = ∂f
∂y (0, 0) = 0, bo f (x, 0) = f (0, y) = 0. Mamy

f (x, x) = 1
2 dla x ̸= 0, więc funkcja nie jest ciągła.

Uwaga. Nawet w wymiarze nieskończonym ma sens zapis

da f. (h1, . . . , hm) =

[
∂f

∂x1
(a) , . . . ,

∂f

∂xm
(a)

]
·


h1
...
hm

 ,
gdzie mnożenie odpowiada wartościowaniu ∂f

∂xi
(a) .hi, co jest zwykłym mnożeniem macierzy, gdy

rozpatrujemy Ei = K.

Twierdzenie 13. Przy wprowadzonych oznaczeniach załóżmy, że f : Ω→ F jest różniczkowalne na
Ω ∈ topE1× . . .×Em. f jest klasy C1 wtedy i tylko wtedy, gdy odwzorowania pochodne cząstkowe
∂f
∂xi

: Ω ∋ x→ ∂f
∂xi

(x) ∈ L (Ei, F ) są ciągłe.

Dowód. ( =⇒ ) Mamy ∂f
∂xi

(a) = da f ◦ ui, więc dla φi : L (E1 × . . .× Em, F ) ∋ L → L ◦ ui ∈
L (Ei, F ) mamy ∂f

∂xi
= φi ◦ f ′, co jest złożeniem odwzorowań ciągłych.

(⇐= ) Mamy da f =
∑m

i=1
∂f
∂xi

(a) ◦ pi, więc dla ψi : L (Ei, F ) ∋ L→ L ◦ pi ∈ L (E1 × . . .× Em, F )

mamy f ′ =
∑m

i=1 ψi ◦ ∂f
∂xi

, co jest złożeniem odwzorowań ciągłych.

Uwaga. Niech F = F1 × . . . × Fn i niech vj i qj będą odpowiednio zanurzeniem i rzutowaniem
związanym z tą przestrzenią. Rozważmy a ∈ A ⊆ E1 × . . .× Em i odwzorowanie f = (f1, . . . , fn) :

A → F1 × . . . × Fn różniczkowalne w a. Mamy dobrze zdefiniowane ∂fj
∂xi

(a) ∈ L (Ei, Fj). Jest
da fj =

∑m
i=1

∂fj
∂xi

(a) ◦ pi, skąd da f =
∑n

j=1 vj ◦ da fj =
∑

i=1,...,m
j=1,...,n

vj ◦ ∂fj
∂xi

(a) ◦ pi. Można to

zinterpretować macierzowo

da f.h =


∂f1
∂x1

(a) . . . ∂f1
∂xm

(a)
...

. . .
...

∂fn
∂x1

(a) . . . ∂fn
∂xm

(a)

 ·

h1
...
hm

 ,
co ponownie ma dokładny sens, gdy rozważamy Ei = Fj = K.

Przykład. Dla f : (0,+∞)
2 ∋ (x, y)→

(
x
y ,

y
x

)
∈ R2 mamy

d(x,y) f =

[
1
y − x

y2

− y
x2

1
x

]
.

Do tego Jac f (x, y) = det d(x,y) f = 1
xy −

xy
x2y2 = 0.

Propozycja 12. Niech E1, . . . , En, F1, . . . , Fm, G1, . . . , Gℓ będą przestrzeniami Banacha nad ciałem
K. Niech ui, pi, vj , qj oraz wk, rk będą odpowiednio zanurzeniami i rzutowaniami na produkt odpo-
wiednio przestrzeni E =

∏n
i=1Ei, F =

∏m
j=1 Fj i G =

∏ℓ
k=1Gk. Niech A ⊆ E,B ⊆ A, f : A→ F ,

f (A) ⊆ B, g : B → G. Oznaczmy η = g ◦ f . Ustalmy a ∈ A, b = f (a). Załóżmy, że f jest
różniczkowalne w a, a g jest różniczkowalne w b. Wtedy różniczki cząstkowe η dane są wzorem

∂ηk
∂xi

(a) =

m∑
j=1

∂gk
∂yj

(f (a)) ◦ ∂fj
∂xi

(a) .
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Dowód.
da f =

∑
i=1,...,n
j=1,...,m

vj ◦
∂fj
∂xi

(a) ◦ pi, db g =
∑

s=1,...,m
k=1,...,ℓ

wk ◦
∂gk
∂ys

(b) ◦ qs.

Zatem

da η =
∑

i=1,...,n
j=1,...,m
s=1,...,m
k=1,...,ℓ

wk ◦
∂gk
∂ys

(f (a)) ◦ qs ◦ vj ◦
∂fj
∂xi

(a) ◦ pi =
∑

i=1,...,n
j=1,...,m
k=1,...,ℓ

wk ◦
∂gk
∂yj

(f (a)) ◦ ∂fj
∂xi

(a) ◦ pi.

Druga równość wynika z qs ◦ vj = 0 dla s ̸= j i qs ◦ vs = 1. Zapiszmy η = (η1, . . . , ηℓ). Mamy

∂ηk
∂xi

(a) = rk ◦ da η ◦ ui =
m∑
j=1

∂gk
∂yj

(f (a)) ◦ ∂fj
∂xi

(a)

Uwaga. Wzór da η = df(a) g ◦ da f można interpretować macierzowo:[
∂ηk
∂xi

(a)

]
k=1,...,ℓ
i=1,...,n

= da η =

[
∂gk
∂yj

(f (a))

]
k=1,...,ℓ
j=1,...,m

·
[
∂fj
∂xi

(a)

]
j=1,...,m
i=1,...,n

.

7. Zamiana ciała przy różniczkowaniu
2025-10-20

Definicja 11. Niech E,F będą przestrzeniami Banacha nad C, a ∈ intA ⊆ A ⊆ E ̸= (0) i f : A→ F .
Odwzorowanie f jest K-różniczkowalne w a, gdy istnieje odwzorowanie K-liniowe L ∈ LK (E,F )

takie, że limx→a
∥f(x)−f(a)−L(x−a)∥

∥x−a∥ = 0.

Propozycja 13. L ∈ LR (E,F ) jest C-liniowe wtedy i tylko wtedy, gdy L (ix) = iL (x) dla x ∈ E .

Propozycja 14. Odwzorowanie f jest C-różniczkowalne w a wtedy i tylko wtedy, gdy f jest R-
różniczkowalne w a i różniczka dRa f jest C-liniowa.

Przykład. f : C ≃ R2 ∋ (x, y) → (x, 0) ∈ R2 jest R-różniczkowalne, ale nie C-różniczkowalne.
Rzeczywiście, f jest R-liniowe, więc d(x,y) f = f , ale obraz f to jedna oś współrzędnych, która nie
jest podprzestrzenią (zespoloną) C, więc f nie może być C-liniowe.

Przykład. f : C ≃ R2 ∋ (x, y) →
(
x2 + y2, 2xy

)
∈ R2 jest R-różniczkowalne, mamy d(x,y) f =[

2x −2y
2y 2x

]
. Zatem d(a,y) f. (h1, h2) = (2xh1 − 2yh2, 2yh1 + 2xh2) = 2 (xh1 − yh2, yh1 + xh2) =

2 (x+ iy) (h1 + ih2), co jest C-liniowe, mamy dCz f (w) = 2zw, wyjściowe odwzorowanie to po prostu
f (z) = z2.

Przykład. Niech f = u+ iv będzie funkcją z (Cm, a) w C, która jest R-różniczkowalna. Dla uprosz-
czenia przyjmujemy m = 1. Mamy C ∋ z = x + iy oraz zdefiniowane wcześniej oznaczenie na
rzutowanie dx : C ∋ z = x + iy → x ∈ R i analogicznie dy. W tej chwili dz = dz+i dy oznacza
identyczność na C. Mamy dRa f = ∂f

∂x (a) dx+∂f
∂y (a) dy, a to jest C-liniowe dokładnie wtedy, gdy

dRa f (i) = idRa f (1), czyli ∂f
∂y (a) = i∂f∂x (a).

Podstawiając definicję f dostajemy ∂u
∂y (a) + i∂v∂y (a) = i

(
∂u
∂x (a) + i ∂v∂x (a)

)
, co sprowadza się do
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układu zwanego równaniami Cauchy’ego-Riemanna:{
ux = vy

uy = −vx
.

Uwaga. Zauważmy, że funkcja f (x, y) : R2 → C daje się zapisać za pomocą zmiennej z = x + iy
oraz wzorów Eulera x = z+z

2 , y = z−z
2 jako funkcja f (z, z). Wprowadzając oznaczenie dz = dx−idy

spróbujemy zapisać dRa f = α dz+β dz przy pewnych α, β ∈ C. Oznaczymy ∂f
∂z = α i ∂f

∂z = β. Takie
napisy nazywamy pochodnymi formalnymi.

dRa f =
∂f

∂x
(a) dx−i∂f

∂y
(a) idy =

∂f

∂x
(a) (dx+i dy)− i∂f

∂y
(a) (dx+i dy)− ∂f

∂x
(a) i dy+i

∂f

∂y
(a) dx

− ∂f

∂x
(a) dx+i

∂f

∂y
(a) (−idy) + ∂f

∂x
(a) dx−i∂f

∂y
(a) (−i dy) =(

∂f

∂x
(a)− i∂f

∂y
(a)

)
dz+

(
∂f

∂x
(a) + i

∂f

∂y
(a)

)
dz−∂f

∂x
(a) dx+i

∂f

∂y
(a) (i dy) =(

∂f

∂x
(a)− i∂f

∂y
(a)

)
dz+

(
∂f

∂x
(a) + i

∂f

∂y
(a)

)
dz− dRa f.

Zatem

dRa f =
1

2

(
∂f

∂x
(a)− i∂f

∂y
(a)

)
dz+

1

2

(
∂f

∂x
(a) + i

∂f

∂y
(a)

)
dz =

∂f

∂z
(a) dz+

∂f

∂z
(a) dz .

Zauważmy, że ∂f
∂y (a) = i∂f∂x (a) ⇐⇒ ∂f

∂z (a) = 0 jest kolejnym warunkiem równoważnym C-
różniczkowalności.

Twierdzenie 14. Funkcja f = u + iv : (Cm, a) → C, która jest R-różniczkowalna w a jest C-
różniczkowalna w a, gdy zachodzi jeden z poniższych (równoważnych) warunków:

1. ∂f
∂yj

(a) = i ∂f
∂xj

(a) dla j = 1, . . . ,m.

2.

{
∂u
∂xj

(a) = ∂v
∂yj

(a)
∂u
∂yj

(a) = − ∂v
∂xj

(a)
dla j = 1, . . . ,m.

3. ∂f
∂zj

= 0 dla j = 1, . . . ,m.

Dowód. Wynika z powyższych rozważań.

Uwaga. Jeśli f : (Cm, a)→ Cm jest C-różniczkowalna w a, to jest też R-różniczkowalna w a. Mamy
utożsamienie dCa f ∈ Mm×m (C) oraz dRa f ∈ M2m×2m (R), a więc możemy policzyć JacC f (a) i

JacR f (a). Okazuje się, że JacR f (a) =
∣∣∣JacC f (a)∣∣∣2.

8. Twierdzenie o przyrostach
2025-10-23

Twierdzenie 15 (O przyrostach). Niech F będzie przestrzenią Banacha nad K, a < b w R, funkcje
f : [a, b] → F oraz g : [a, b] → R będą ciągłe i istnieje taki zbiór S ⊆ [a, b], że |S| ≤ ℵ0 i a, b ∈ S
oraz dla każdego t ∈ [a, b] \ S istnieją f ′+ (t) , g′+ (t) i

∥∥f ′+ (t)
′∥∥ ≤ g′+ (t). W takiej sytuacji zachodzi

∥f (b)− f (a)∥ ≤ g (b)− g (a).
Dowód. Udowodnione na AM2.

Uwaga. Powyższe twierdzenie działa tak samo, gdy pochodne prawostronne zastąpimy lewostron-
nymi (wystarczy je zastosować do funkcji f̃ (t) = −f (t)). Najczęściej stosujemy je w sytuacji, gdy
S = {a, b} i f, g są różniczkowalne w (a, b).
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Definicja 12. Odcinkiem (wektorowym) o końcach a, b ∈ E (gdzie E jest przestrzenią wektorową
nad R) nazywamy zbiór [a, b] = {a+ t (b− a) : t ∈ [0, 1]}.

Definicja 13. Podzbiór C ⊆ E, gdzie E jest przestrzenią wektorową nad R, nazywamy wypukłym,
gdy dla każdych x, y ∈ C mamy [x, y] ⊆ C.

Twierdzenie 16. Niech E,F będą przestrzeniami Banacha nad K, Ω ∈ topE, niech f : Ω → F
będzie różniczkowalna oraz [a, b] ⊆ Ω. Jeśli istnieje takie K > 0, że dla każdego x ∈ [a, b] mamy
∥dx f∥ ≤ K, to ∥f (b)− f (a)∥ ≤ K ∥b− a∥.

Dowód. Określamy f̃ (t) = f (a+ t (b− a)) oraz g̃ (t) = K ∥b− a∥ t dla t ∈ [0, 1]. Są to funkcje
ciągłe, mają pochodne prawostronne w [0, 1) a ponadto∥∥∥f̃ ′+ (t)

∥∥∥ =

∥∥∥∥ d

dt
f (a+ t (b− a))

∥∥∥∥ ≤ ∥∥da+t(b−a) f
∥∥ ∥b− a∥ ≤ K ∥b− a∥ = g′+ (t) .

Teza wynika z twierdzenia o przyrostach.

Wniosek. Niech E,F będą przestrzeniami Banacha nad K, Ω ⊆ E otwarty i wypukły, f : Ω → F
różniczkowalna taka, że ∥dx f∥ ≤ K dla pewnego K > 0 i każdego x ∈ Ω. Wtedy dla każdego
a, b ∈ Ω mamy ∥f (b)− f (a)∥ ≤ K ∥b− a∥.

Twierdzenie 17. Niech E,F będą przestrzeniami Banacha nad K, D ⊆ E obszarem (zbiór otwarty
i spójny). Niech f : D → F będzie funkcją różniczkowalną taką, że dx f ≡ 0 dla każdego x ∈ D.
Wtedy f ≡ const.

Dowód. Ustalmy pewne a ∈ D i rozważmy zbiór D̃ = {x ∈ D : f (x) = f (a)}. Oczywiście a ∈ D̃.
Mamy D̃ = f−1 ({f (a)}), a funkcja różniczkowalna jest ciągła, więc D̃ jest domknięty. Ustalmy
x0 ∈ D̃ i wybierzmy r > 0 tak, by K (x0, r) ⊆ D (z otwartości D). Kule są wypukłe, a więc dla
każdego x ∈ K (x0, r) mamy ∥f (x)− f (x0)∥ ≤ 0 · ∥x− x0∥, więc f (x) = f (x0) = f (a), czyli
K (x0, r) ⊆ D̃. Zatem D̃ jest niepusty, otwarty i domknięty, co wobec spójności D daje D̃ = D.

Twierdzenie 18. Niech E,F będą przestrzeniami Banacha nad K, a ∈ Ω ∈ topE, h ∈ E będzie
takie, że [a, a+ h] ⊆ Ω oraz niech f : Ω→ F będzie różniczkowalna. Zachodzi

∥f (a+ h)− f (a)− da f (h)∥ ≤ sup
x∈[a,a+h]

∥dx f − da f∥ ∥h∥ .

Dowód. Możemy założyć, że supremum jest skończone (inaczej teza jest trywialna) i wynosi K. Na
Ω rozważamy funkcję f̃ = f − da f . Zachodzi

f̃ (a+ h)− f̃ (a) = f (a+ h)− da f (a+ h)− f (a) + da f (a) = f (a+ h)− f (a)− da f (h) .

Mamy dx f̃ = dx f − da f , zatem
∥∥∥dx f̃∥∥∥ ≤ K dla każdego x ∈ [a, a+ h]. Nierówność∥∥∥f̃ (a+ h)− f̃ (a)

∥∥∥ ≤ K ∥a+ h− a∥

kończy dowód.

9. Ciągi i szeregi funkcji różniczkowalnych
2025-10-23

Twierdzenie 19. Niech E,F będą przestrzeniami Banacha nad K, D ⊆ E zbiorem wypukłym i
ograniczonym. Niech fn : D → F będzie różniczkowalna dla n ∈ N+ oraz niech g : D → L (E,F )
będzie taka, że f ′n ⇒ g oraz niech istnieje takie x0 ∈ D, że (fn (x0))n∈N+

jest zbieżny. W takiej
sytuacji (fn)n∈N+

zbiega jednostajnie do pewnej funkcji różniczkowalnej f : D → F takiej, że
f ′ = g.
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Dowód. Jest spełniony jednostajny warunek Cauchy’ego

∀ε>0 ∃N∈N ∀m,n≥N ∀x∈D ∥dx fm − dx fn∥ < ε.

D jest wypukły oraz (fm − fn)′ (x) = dx fm − dx fn, więc dla odpowiednio dużych m,n i a, x ∈ D
mamy

∥(fm − fn) (x)− (fm − fn) (a)∥ ≤ ε ∥x− a∥ .

Stąd wynika, że dla każdego x ∈ D ciąg (fn (x))n∈N+
jest Cauchy’ego:

∥fm (x)− fn (x)∥ ≤ ε ∥x− x0∥+ ∥(fm − fn) (x0)∥ ≤ ε′,

gdzie pierwsza nierówność to skorzystanie z poprzedniej dla a = x0, a druga to ograniczoność D
i zbieżność fn (x0). Przestrzeń F jest zupełna, więc istnieje granica punktowa f = limn→∞ fn.
Przechodząc w powyższej nierówności z m do +∞ dostajemy jednostajną zbieżność. Do tego

∥f (a+ h)− f (a)− g (a) .h∥ ≤ ∥(f − fn) (a+ h)− (f − fn) (a)∥+ ∥fn (a+ h)− fn (a)− g (a) .h∥
≤ ε ∥h∥+ ε ∥h∥+ ∥f ′n (a) .h− g (a) .h∥ ≤ 2ε ∥h∥+ ∥f ′n (a)− g (a)∥ ∥h∥ ≤ 3ε ∥h∥ ,

gdzie pierwszy wyraz szacujemy przechodząc m→∞ w ograniczeniu na przyrost fm − fn, a drugi
szacujemy z różniczkowalności fn i zbieżności f ′n ⇒ g. Dostajemy f ′ = g, co kończy dowód.

Twierdzenie 20. Niech E,F będą przestrzeniami Banacha nad K, D ⊆ E obszarem. Niech fn :

D → F będzie różniczkowalna dla n ∈ N+ oraz niech g : D → L (E,F ) będzie taka, że f ′n
lok

⇒ g
oraz niech istnieje takie x0 ∈ D, że (fn (x0))n∈N+

jest zbieżny. W takiej sytuacji (fn)n∈N+
zbiega

lokalnie jednostajnie do pewnej funkcji różniczkowalnej f : D → F , takiej, że f ′ = g.

Dowód. Oznaczmy D̃ =
{
x ∈ D : (fn (x))n∈N+

jest zbieżny
}

. Mamy x0 ∈ D̃. Dla a ∈ D̃ możemy
wybrać r > 0 takie, że K (a, r) ⊆ D oraz f ′n|K(a,r) jest zbieżne jednostajnie. Na tej kuli stosujemy
poprzednie twierdzenie (możemy, bo w a mamy zbieżność punktową), mamy K (a, r) ⊆ D̃.

Ustalmy ciąg (an) ⊆ D̃ taki, że an → b. Dobieramy K (b, r) jak wcześniej, istnieje takie m, że
an ∈ K (b, r) dla n ≥ m. W am mamy zbieżność punktową, więc podobnie jak przedtem K (b, r) ⊆
D̃. W szczególności b ∈ D̃, więc D̃ jest domknięty, otwarty i niepusty. Z tego wynika D̃ = D.
Różniczkowalność f wynika z poprzedniego twierdzenia zastosowanego lokalnie.

Twierdzenie 21. Niech E,F będą przestrzeniami Banacha nad K, D ⊆ E obszarem. Niech fn :
D → F będzie różniczkowalne dla n ∈ N+, a szereg

∑∞
n=1 f

′
n lokalnie jednostajnie zbieżny oraz

niech istnieje x0 ∈ D takie, ze
∑∞

n=1 fn (x0) jest zbieżny. W takiej sytuacji
∑∞

n=1 fn jest lokalnie
jednostajnie zbieżny, jego suma jest funkcją różniczkowalną oraz (

∑∞
n=1 fn)

′
=
∑∞

n=1 f
′
n.

Dowód. Stosujemy poprzednie twierdzenie do sum cząstkowych.

Uwaga. To twierdzenie daje nam możliwość różniczkowania szeregów potęgowych wyraz po wyrazie.

Definicja 14. Funkcja f : D → K dla otwartego D ⊆ Km jest K-analityczna, jeśli lokalnie jest
sumą zbieżnego szeregu potęgowego, czyli dla polidysku P (a, r) =

{
x ∈ Km : ∀j∈[m] |xj − aj | < r

}
mamy, że dla każdego x0 ∈ D istnieje takie r > 0, że f (x) =

∑
α∈Nm cα (x− x0)α w P (x0, r), gdzie

bα = bα1
1 · . . . · bαm

m a zbieżność rozumiemy w sensie rodzin bezwzględnie sumowalnych.

Lemat 2 (Abel). Rozważmy promień r = (r1, . . . , rm). Jeśli dla pewnej rodziny (cα)α∈Nm ⊆ K oraz
pewnego C > 0 mamy |cαrα| < C, to szereg potęgowy

∑
α∈Nm cα (x− x0)α jest zbieżny lokalnie

jednostajnie na P (x0, r) =
{
x ∈ Km : ∀j∈[m] |xj − x0j | < rj

}
.
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Dowód. Weźmy θ ∈ (0, 1) oraz x ∈ P (x0, θr). Można przeszacować (oznaczając |α| = α1+ . . .+αm)∣∣∣∣∣∣
N∑

k=0

∑
|α|=k

cα (x− x0)α
∣∣∣∣∣∣ ≤

N∑
k=0

∑
|α|=k

Cθ|α| = C

N∑
k=0

(
m+ k − 1

m− 1

)
θk,

co jest zbieżne. Zatem mamy zbieżność lokalnie jednostajną, bo dla każdego x można dobrać θ tak,
by x ∈ P (x0, θr).

Wniosek. Jeśli rzeczywisty szereg potęgowy
∑

α∈Nm cα (x− x0)α jest lokalnie jednostajnie zbieżny
na polidysku rzeczywistym PR (x0, r), to jest też lokalnie jednostajnie zbieżny na PC (x0, r).

Dowód. Ustalmy a ∈ PC (x0, r). Wiemy, że wyrazy szeregu zbiegają do zera w pewnym otoczeniu
a, a więc |cα (x− x0)α| ≤ C dla pewnego C > 0. Przechodząc z x do granicy polidysku dostajemy
|cαrα| ≤ C, a więc z lematu szereg jest lokalnie jednostajnie zbieżny w otoczeniu a, a więc również
w PC (x0, r).

Propozycja 15. Jeśli szereg potęgowy
∑

α∈Nm cα (x− x0)α jest jednostajnie zbieżny na P (x0, r), to
szereg jego pochodnych

∑
α∈Nm

∑m
i=1 αicα (x− x0)α−ei jest lokalnie jednostajnie zbieżny.

Dowód. Jednostajna zbieżność szeregu potęgowego daje nam |cαrα| < C. Podobnie jak w lemacie
Abela dla θ takiego, że |x− x0| ≤ θr mamy∣∣∣∣∣∣

N∑
k=0

∑
|α|=k

m∑
i=1

αicα (x− x0)α−ei

∣∣∣∣∣∣ ≤ C
N∑

k=0

mk

(
m+ k − 1

m− 1

)
θk−1,

gdzie tym razem dodatkowo skorzystaliśmy z αi ≤ k. Ten szereg jest jednostajnie zbieżny, co daje
tezę.

Wniosek. Funkcje analityczne mają pochodne analityczne.

10. Pochodne cząstkowe a różniczkowalność
2025-10-27

Twierdzenie 22 (O różniczkowaniu w punkcie). Niech E1, . . . , Em, F będą przestrzeniami Banacha
nad K (m ≥ 2), Ω ∈ topE1 × . . . × Em, f : Ω → F , a ∈ Ω. Załóżmy, że istnieje otoczenie otwarte
a ∈ Ω0 ⊆ Ω takie, że na Ω0 funkcja f posiada ciągłe pochodne cząstkowe. W takiej sytuacji f jest
różniczkowalna w a.

Dowód. Kandydatem na różniczkę jest oczywiście L =
∑m

j=1
∂f
∂xj

(a) ◦ pj . Przeliczamy

f (x)− f (a)−
m∑
j=1

∂f

∂xj
(a) . (xj − aj) = f (x1, . . . , xm)− f (a1, x2, . . . , xm)− ∂f

∂x1
(a) . (x1 − a1)

+ f (a1, x2, . . . , xm)− f (a1, a2, x3, . . . , xm)− ∂f

∂x2
(a) . (x2 − a2) + . . . =

m−1∑
j=0

Rj+1 (x) ,

dlaRj+1 (x) = f (a1, . . . , aj , xj+1, . . . , xm)−f (a1, . . . , aj+1, xj+2, . . . , xm)− ∂f
∂xj+1

(a) . (xj+1 − aj+1).

Z ciągłości pochodnych cząstkowych mamy
∥∥∥ ∂f
∂xj+1

(x)− ∂f
∂xj+1

(a)
∥∥∥ < ε dla wszystkich j i x takich,

że |xj − aj | < r dla pewnego r i wszystkich j. Ustaliwszy punkt x = (x1, . . . , xm) oznaczmy x̂j+1 =

(xj+2, . . . , xm) i potraktujmy xj+1 jako zmienny: Rx̂j+1

j+1 (xj+1) := Rj+1 (x), co zadaje nam funkcję
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z K (aj+1, r) w F . Z twierdzenia o przyrostach mamy∥∥∥Rx̂j+1

j+1 (xj+1)
∥∥∥ =

∥∥∥Rx̂j+1

j+1 (xj+1)−R
x̂j+1

j+1 (aj+1)
∥∥∥ ≤ sup

y∈K(aj+1,r)

∥∥∥dy Rx̂j+1

j+1

∥∥∥ ∥xj+1 − aj+1∥ =

sup
y∈K(aj+1,r)

∥∥∥∥ ∂f

∂xj+1
(a1, . . . , aj , y, x̂j+1)− 0− ∂f

∂xj+1
(a)

∥∥∥∥ ∥xj+1 − aj+1∥ ≤ ε ∥xj+1 − aj+1∥ ,

zatem ∥f (x)− f (a)− L (x− a)∥ ≤
∑m−1

j=0 ∥Rj+1 (x)∥ ≤ ε
∑m−1

j=0 ∥xj+1 − aj+1∥, koniec.

Uwaga. Czasem poszukuje się innych wersji tego twierdzenia, najczęściej przy słabszych założeniach.
Można pokazać na przykład, że wystarczy nam istnienie jednej z różniczek cząstkowych w a oraz
ciągłość pozostałych pochodnych cząstkowych w otoczeniu a.

Twierdzenie 23. Niech E1, . . . , Em, F będą przestrzeniami Banacha nad K (m ≥ 2), Ω ∈ topE1 ×
. . . × Em, f : Ω → F . Funkcja f jest klasy C1 w Ω wtedy i tylko wtedy, gdy wszystkie pochodne
cząstkowe istnieją w Ω i są ciągłe.

Dowód. ( =⇒ ) Już dowodziliśmy.

(⇐= ) Poprzednie twierdzenie daje nam różniczkowalność f , a przy tym założeniu już dowodziliśmy.

11. Dyfeomorfizmy
2025-10-27

Propozycja 16. Niech E,F będą przestrzeniami Banacha nad K, a ∈ A ⊆ E, b ∈ B ⊆ F . Niech
f : A→ B będzie bijekcją taką, że f (a) = b oraz f jest różniczkowalne w a, a f−1 jest różniczkowalne
w b. W takiej sytuacji da f ∈ Isom (E,F ) oraz db f

−1 = (da f)
−1.

Dowód. Mamy id = db
(
f ◦ f−1

)
= da f ◦ db f−1 i tak samo id = db f

−1 ◦ da f , co daje tezę.

Twierdzenie 24. Niech E,F będą przestrzeniami Banacha nad K, a ∈ intA ⊆ A ⊆ E, b ∈ intB ⊆
B ⊆ F . Niech f : A → B będzie bijekcją taką, że f (a) = b oraz f jest różniczkowalne w a,
a f−1 jest ciągłe w b. W takiej sytuacji f−1 jest różniczkowalne w b wtedy i tylko wtedy, gdy
da f ∈ Isom (E,F ).

Dowód. ( =⇒ ) Wynika z poprzedniego.

(⇐= ) Mamy f (x)− f (a) = da f (x− a) + η (x) ∥x− a∥, gdzie η : A→ F jest ciągła i zerowa w a.
da f jest izomorfizmem, więc istnieje takie m > 0, że ∥da f.h∥ ≥ m ∥h∥, czyli

∥∥∥(da f)−1
∥∥∥ ≤ 1

m .

Ustalmy ε > 0. Z ciągłości η ◦ f−1 w b mamy r > 0 takie, że K (b, r) ⊆ B oraz dla y ∈ K (b, r) jest∥∥η (f−1 (y)
)∥∥ ≤ m

2 min (1, εm). Kładąc x = f−1 (y) możemy przeliczyć

∥f (x)− f (a)∥ ≥ ∥da f (x− a)∥ − ∥η (x)∥ ∥x− a∥ ≥ m ∥x− a∥ −
m

2
∥x− a∥ = m

2
∥x− a∥ ,

gdzie pierwsze przejście to odwrotna nierówność trójkąta. Mamy zatem∥∥∥f−1 (y)− f−1 (b)− (da f)
−1
. (y − b)

∥∥∥ =
∥∥∥x− a− (da f)

−1
. (f (x)− f (a))

∥∥∥ =∥∥∥(da f)−1
(da f. (x− a)− (f (x)− f (a)))

∥∥∥ ≤ 1

m
∥η (x)∥ ∥x− a∥ ≤ 1

m
εm

m

2
∥x− a∥ ≤ ε ∥y − b∥ .

Definicja 15. Niech E,F będą przestrzeniami Banacha na K, U ∈ topE, V ∈ topF . Odwzorowanie
f : U → V nazywamy dyfeomorfizmem, gdy jest bijekcją klasy C1 o funkcji odwrotnej f−1 klasy C1.
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Uwaga. Dyfeomorficzność implikuje homeomorficzność, ale nawet homeomorfizm klasy C1 nie musi
być dyfeomorfizmem, np. f (x) = x3, którego odwrotność 3

√
x nie jest różniczkowalna w 0.

Izomorfizmy topologiczne są dyfeomorfizmami. Złożenia dyfeomorfizmów to dyfeomorfizmy.

Twierdzenie 25. Niech E,F będą przestrzeniami Banacha nad K, U ∈ topE, V ∈ topF . Niech
f : U → V będzie homeomorfizmem klasy C1. f jest dyfeomorfizmem wtedy i tylko wtedy, gdy
dx f ∈ Isom (E,F ) dla każdego x ∈ U .

Dowód. ( =⇒ ) f−1 jest różniczkowalne w f (x), więc dx f ∈ Isom (E,F ).

(⇐= ) f−1 jest różniczkowalna w V , mamy dy f
−1 =

(
df−1(y) f

)−1, zatem
(
f−1

)′
= η ◦ f ′ ◦ f−1,

gdzie η : Isom (E,F ) ∋ φ → φ−1 ∈ Isom (F,E). Wszystkie składane funkcje są ciągłe, więc mamy
tezę.

Uwaga (Przypomnienie). Twierdzenie Banacha o punkcie stałym: niech (X, d) będzie zupełną prze-
strzenią metryczną, f : X → X kontrakcją (odwzorowaniem θ-lipschitzowskim dla θ ∈ [0, 1)).
Istnieje dokładnie jeden punkt stały f .

W algebrze Banacha A dla ∥α∥ < 1 mamy 1− α ∈ G (A).

Twierdzenie 26 (O lokalnym dyfeomorfizmie). Niech E,F będą przestrzeniami Banacha nad K, niech
a ∈ Ω ∈ topE. Ustalmy f : Ω → F klasy C1 takie, że da f ∈ Isom (E,F ). Istnieją otoczenia
a ∈ U ⊆ Ω i f (a) ∈ V ⊆ F takie, że f (U) = V oraz f |U : U → V jest dyfeomorfizmem.

Dowód. Niech g = (da f)
−1 ◦ f : Ω → E. Jest to odwzorowanie klasy C1. Do tego da g =

(da f)
−1 ◦ da f = idE . Jeśli wskażemy otoczenia U ∋ a, W ∋ g (a) takie, że g (U) = W i g|U

jest dyfeomorfizmem, to otrzymamy dyfeomorfizm f |U = da f ◦ g z U na da f (W ). Zatem to nam
wystarczy.

Wprowadźmy φ : Ω ∋ x → x − g (x) ∈ E, które jest C1. Mamy da φ = idE − da g = 0. Z ciągłości
istnieje r > 0 takie, że dla każdego x ∈ K (a, r) ⊆ Ω mamy ∥dx φ∥ ≤ 1

2 . Z twierdzenia o przyro-
stach mamy ∥φ (x1)− φ (x2)∥ ≤ 1

2 ∥x1 − x2∥ dla x1, x2 ∈ K (a, r). Ponadto dx g = idE − dx φ jest
odwracalne w algebrze Banacha L (E,E), więc dx g ∈ Isom (E,E) dla każdego x ∈ K (a, r).

Pokażemy, że dla każdego y ∈ K
(
g (a) , r2

)
istnieje dokładnie jeden x ∈ K (a, r) taki, że g (x) = y.

Ustalmy y i rozważmy równianie 0 = y − g (x), czyli x = y + φ (x). Odwzorowanie hy : K (a, r) ∋
x → y + φ (x) ∈ E przyjmuje wartości w K (a, r), bo ∥hy (x)− a∥ = ∥y − g (a) + φ (x)− φ (a)∥ ≤
∥y − g (a)∥+ ∥φ (x)− φ (a)∥ < r

2 + 1
2 ∥x− a∥ ≤ r.

φ jest 1
2 -lipschitzowskie, z czego wynika, że hy jest 1

2 -lipschitzowskie, zatem ma jedyny punkt stały
(bo kula domknięta jest zupełna). Jest nim xy = hy (xy) ∈ K (a, r), zatem g (xy) = y. Pokazaliśmy,
że g jest bijekcją z U = K (a, r) ∩ g−1

(
K
(
g (a) , r2

))
w K

(
g (a) , r2

)
. Do tego g|U jest ciągłe i ma

różniczkę będącą izomorfizmem. Pozostaje sprawdzić ciągłość g|−1
U .

Dla x1, x2 ∈ U mamy ∥φ (x1)− φ (x2)∥ ≤ 1
2 ∥x1 − x2∥. Z odwrotnej nierówności trójkąta mamy

∥φ (x1)− φ (x2)∥ ≥ |∥x1 − x2∥ − ∥g (x1)− g (x2)∥|. Zatem 1
2 ∥x1 − x2∥ ≤ ∥g (x1)− g (x2)∥, czyli

g|−1
U jest 2-lipschitzowskie, a więc ciągłe. Ostatecznie dostajemy, że g|U jest dyfeomorfizmem.

Uwaga. Powyższe twierdzenie zachodzi dla dowolnej klasy Ck, gdzie k ∈ N+ ∪ {∞, ω}.

Twierdzenie 27. Niech E,F będą przestrzeniami Banacha nad K, Ω ∈ topE, f : Ω → F będzie
klasy C1. Następujące warunki są równoważne:

1. f (Ω) ∈ topF i f : Ω→ f (Ω) jest dyfeomorfizmem.

2. f jest iniekcją oraz ∀x∈Ω dx f ∈ Isom (E,F ).

Dowód. ( =⇒ ) Wynika z poprzednich.

(⇐= ) Z twierdzenia o lokalnym dyfeomorfizmie dla każdego a ∈ Ω istnieją otoczenia a ∈ Ua ⊆ Ω,
f (a) ∈ Va ⊆ F takie, że f |Ua

: Ua → Va jest dyfeomorfizmem. Wtedy Va ⊆ f (Ω), skąd f (Ω) jest
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otwarty, a z iniektywności f mamy poprawnie określone f−1 : f (Ω) → Ω, które jest lokalnie klasy
C1, skąd mamy tezę.

Uwaga. Dla E = F = Kn warunek dx f ∈ Isom (Kn,Kn) jest równoważny Jac f (x) ̸= 0. W
szczególności dla n = 1 oznacza to f ′ (x) ̸= 0, co nad R na podstawie twierdzenia Rolle’a daje nam
iniektywność. Nie działa to jednak nad C, bo np. exp (z) jest klasy C1 i ma niezerową pochodną,
ale jest okresowy.

Uwaga (Hipoteza Kellera, hipoteza jakobianowa). Niech F = (F1, . . . , Fm) : Km → Km będzie od-
wzorowaniem wielomianowym (Fi jest wielomianem) takim, że JacF ̸= 0. Wtedy spodziewamy się,
że F jest iniekcją.

Dla K = C łatwo pokazać bijektywność z iniektywności, dla K = R również zostało to pokazane.
Dla m = 1 hipoteza jest udowodniona, dla m > 1 i K = C problem jest otwarty, a dla K = R
podano kontrprzykład dla m = 2.

Dla K = C teza jest równoważna pokazaniu, że F jest właściwe, czyli przeciwobraz zbioru zwartego
jest zwarty. Równoważnie: lim∥x∥→∞ ∥F (x)∥ = +∞.

W przypadku zespolonym F−1 też jest wielomianowe (jeśli istnieje). Ponadto JacF ∈ C [x1, . . . , xm],
zatem jeśli ten wielomian nie ma pierwiastków, to musi być stały.

12. Funkcje uwikłane
2025-10-30

Twierdzenie 28 (O funkcji uwikłanej). Niech E,F,G będą przestrzeniami Banacha nad K. Niech
Ω ∈ top (E × F ) oraz niech f : Ω ∋ (x, y)→ f (x, y) ∈ G będzie klasy C1. Ustalmy (a, b) ∈ f−1 (0).
Zakładamy, że ∂f

∂y (a, b) ∈ Isom (F,G). W takiej sytuacji istnieją otoczenia a ∈ U ⊆ E, b ∈ V ⊆ F

oraz odwzorowanie g : U → V klasy C1 takie, że U × V ⊆ Ω oraz (x, y) ∈ U × V ∩ f−1 (0) ⇐⇒
y = g (x) (to znaczy U × V ∩ f−1 (0) jest wykresem g).

Dowód. Niech Φ (x, y) = (x, f (x, y)) będzie określone na Ω. Mamy Φ (a, b) = (a, 0) oraz d(a,b) Φ =(
pE ,d(a,b) f

)
. Jeśli dla (h′, k′) ∈ E ×G chcemy znaleźć (h, k) ∈ E × F takie, że

(h′, k′) = d(a,b) Φ (h, k) =

(
h,
∂f

∂x
(a, b) .h+

∂f

∂y
(a, b) .k

)
,

to musi być h = h′ i k =
(

∂f
∂y (a, b)

)−1 (
k′ − ∂f

∂x (a, b) .h
)
, zatem d(a,b) Φ jest liniową i ciągłą bijekcją,

a więc izomorfizmem topologicznym (stosujemy tu twierdzenie Banacha).

Z twierdzenia o lokalnym dyfeomorfizmie mamy otoczenia (a, b) ∈ Ũ ⊆ Ω i (a, 0) ∈ Ṽ ⊆ E×G takie,
że Φ|Ũ : Ũ → Ṽ jest dyfeomorfizmem. Rozważmy g̃ =

(
Φ|Ũ

)−1. Musi być g̃ (x, z) = (x, g̃1 (x, z)),
gdzie g̃1 jest klasy C1.

NiechW =
{
x ∈ E : (x, 0) ∈ Ṽ

}
∋ a. Ten zbiór jest otwarty, bo jest przeciwobrazem Ṽ w zanurzeniu

z E do E ×G. Wybieramy takie otoczenia a ∈ W̃ ⊆W i b ∈ V ⊆ F , że W̃ × V ⊆ Ũ . Z ciągłości g̃1
możemy wybrać takie otoczenie a ∈ U ⊆ W̃ , że g̃1 (U × {0}) ⊆ V .

Dla (x, y) ∈ U × V mamy równoważność g̃1 (x, 0) = y ⇐⇒ Φ (x, y) = (x, 0) ⇐⇒ f (x, y) = 0.
Zatem g = g̃1 (·, 0) |U jest funkcją żądaną w tezie.

Uwaga. W przypadku E = Km, F = G = Kn założenie to istnienie takiego odwzorowania f :

(Km ×Kn, (a, b))→ Kn, że det
[

∂fi
∂xm+j

]
i,j=1,...,n

̸= 0. Badamy zbiór rozwiązań równania f (x, y) = 0

(równie dobrze można wybrać dowolną inną wartość). Przy założeniu istnienia jednego rozwiązania
(szczególnie ustawionego względem „osi” y) dostajemy istnienie innych rozwiązań, których zbiór ma
ładną strukturę.
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Przykład. Rozważmy funkcję f (x, y) = x2 + y2 − 1, poziomica f (a, b) = 0 to okrąg jednostkowy.
Liczymy ∇f (a, b) = [2a, 2b], co nie równa się 0 na całym f−1 (0), więc w dowolnym punkcie pozio-
micy można zastosować twierdzenie o funkcji uwikłanej. W (a, b) = (1, 0) możemy popatrzeć tylko
na wykres x (y), w (a, b) = (0, 1) tylko na y (x), a w pozostałych punktach mamy oba wykresy x (y)
i y (x).

Uwaga. Możliwości odwikłania zmiennych i przedstawienia poziomicy jako wykresu „determinuje”
przeciwdziedzina – dla f (x, y, z) : R3 → R2 możemy liczyć na przedstawienie poziomicy jako
wykresu funkcji (y (x) , z (x)) lub (x (y) , z (y)) lub (x (z) , y (z)).

Przykład. Funkcja f (x, y) = (y − g (x))2 z g : (R, 0) → (R, 0) klasy C1 nie spełnia założeń twier-
dzenia o funkcji uwikłanej w (0, 0), chociaż f−1 (0) jest wykresem g.

Uwaga. Dowód twierdzenia o funkcji uwikłanej pozwala uzyskać g tej samej klasy, co f i to nawet w
przypadku analitycznym: bez zmian dowodu mamy twierdzenie nad C i powołujemy się na twierdze-
nie, że C-analityczność to C-różniczkowalność. Nad R wykorzystując lemat Abela pokazujemy, że
funkcja R-analityczna f na obszarze Ω ⊆ Rn przedłuża się jednoznacznie do funkcji C-analitycznej f̃
na otwartym Ω̃ ⊆ Cn takim, że Ω̃∩Rn = Ω. Wobec związku między dRa f i dCa f możemy zastosować
twierdzenie o funkcji uwikłanej dla f̃ .

Uwaga. Zbiór f−1 (0) może być dość dowolny nawet dla funkcji klasy C∞. Istnieje twierdzenie
Whitney’a mówiące, że dla dowolnego zbioru domkniętego A ⊆ Rn istnieje funkcja f : Rn → R
klasy C∞ taka, że f−1 (0) = A.

Uwaga. Twierdzenie o funkcji uwikłanej uzyskaliśmy z twierdzenia o lokalnym dyfeomorfizmie.
Z twierdzenia o funkcji uwikłanej można wywnioskować twierdzenie o lokalnym dyfeomorfizmie:
weźmy f : Ω → F , gdzie Ω ∈ topE i f jest klasy C1 oraz a ∈ Ω takie, że da f ∈ Isom (E,F ).
Rozważmy h (x, y) = y − f (x) określoną na Ω × F , której zbiór zer jest wykresem f . Do tego
∂h
∂x (a, f (a)) = −da f , co jest izomorfizmem. Zatem mamy funkcję g : V → U (gdzie U, V to
odpowiednie otoczenia) taką, że g = (f |U )−1 i g jest odpowiedniej klasy, co daje nam tezę.

Twierdzenie 29. Niech E,F,G będą przestrzeniami Banacha nad K. Niech Ω ∈ top (E × F ) oraz
niech f : Ω ∋ (x, y) → f (x, y) ∈ G będzie klasy C1. Ustalmy (a, b) ∈ f−1 (0). Zakładamy, że
∂f
∂y (a, b) ∈ Isom (F,G). W takiej sytuacji istnieją otoczenia a ∈ U ⊆ E, b ∈ V ⊆ F oraz odwzoro-
wanie g : U → V klasy C1 takie, że U ×V ⊆ Ω oraz (x, y) ∈ U ×V ∩f−1 (0) ⇐⇒ y = g (x), do tego

różniczka funkcji g dla dowolnego x ∈ U dana jest wzorem dx g = −
(

∂f
∂y (x, g (x))

)−1

◦ ∂f
∂x (x, g (x)),

w szczególności ∂f
∂y (x, g (x)) jest izomorfizmem.

Dowód. Z twierdzenia o funkcji uwikłanej mamy istnienie funkcji g. Niech T : U ∋ x→ f (x, g (x)) ∈
G. Mamy T ≡ 0, czyli T ′ ≡ 0. Do tego T = f ◦ (idU , g), więc

0 = dx T = d(x,g(x)) f ◦ (idE ,dx g) =
[
∂f

∂x
(x, g (x)) ◦ pE +

∂f

∂y
(x, g (x)) ◦ pF

]
◦ (idE ,dx g)

=
∂f

∂x
(x, g (x)) +

∂f

∂y
(x, g (x)) ◦ dx g =⇒ dx g = −

(
∂f

∂y
(x, g (x))

)−1

◦ ∂f
∂x

(x, g (x)) .

Pozostaje pokazać, że ∂f
∂y faktycznie możemy odwrócić. Na pewno mamy ∂f

∂y (a, b) ∈ Isom (F,G), ale
ten zbiór jest otwarty, co wobec ciągłości ∂f

∂y daje nam, że istnieją takie otoczenia a ∈ Ũ ⊆ U oraz

b ∈ Ṽ ⊆ V , że ∂f
∂y

(
Ũ × Ṽ

)
⊆ Isom (F,G). Zatem teza zachodzi na Ũ × Ṽ , a można zacieśnić U i V

do Ũ i Ṽ bez straty pożądanych własności g.

Przykład. Rozważmy f = (f1, . . . , fm) : Rn ⊇ Ω → Rm, gdzie Ω ∈ topRn, f (a) = 0 i m ≤ n.
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Badamy układ równań fi (x1, . . . , xn) = 0. Załóżmy, że macierz
[
∂fi
∂xj

(a)
]
i=1,...,m
j=1,...,n

ma po ewentu-

alnej permutacji zmiennych minor główny det
[
∂fi
∂xj

(a)
]
i,j=1,...,m

̸= 0. W takiej sytuacji różniczka

cząstkowa ∂f
∂(x1,...,xm) (a) ∈ L (R

m,Rm) jest izomorfizmem i w otoczeniu punktu a zbiór rozwią-
zań rozważanego układu równań jest wykresem funkcji (x1, . . . , xm) = g (xm+1, . . . , xn), czyli jest
powierzchnią m-wymiarową.

Przykład. Twierdzenie o funkcji uwikłanej daje możliwość badania przebiegu zmienności funk-
cji uwikłanej. Rozważmy równanie 3y5 + y

(
x2 + 1

)
= 4x. Punkt (0, 0) jest rozwiązaniem. Roz-

ważmy f (x, y) = 3y5 + y
(
x2 + 1

)
− 4x. Mamy ∂f

∂y (x, y) = 15y4 +
(
x2 + 1

)
> 0, czyli względem y

mamy funkcję silnie rosnącą. Jest to wielomian stopnia nieparzystego względem y, a więc równanie
f (x0, y) = 0 ma dokładnie jedno rozwiązanie y (x0) dla każdego x0, a nieparzyste stopnie przy y im-
plikują f (−x,−y (x)) = −f (x, y (x)), czyli y (−x) = −y (x). Twierdzenie o funkcji uwikłanej daje
nam klasę C1 tej funkcji, możemy policzyć d

dx

(
3y (x)

5
+ y (x)

(
x2 + 1

)
− 4x

)
= 15y (x)

4
y′ (x) +

y′ (x)
(
x2 + 1

)
+ y (x) 2x − 4 = 0. Możemy przekształcić y′ (x)

(
15y (x)

4
+ x2 + 1

)
= 4 − 2xy (x),

więc y′ (x) = 0 ⇐⇒ xy (x) = 2. Mamy 0 = f (x, y (x)) y (x), co przy xy (x) = 2 przekształca
się do 3t3 + t − 4 = 0 dla t = y (x)

2, czego jedynym rozwiązaniem jest t = 1. Ostatecznie po-
chodna y (x) zeruje się dla y (x) = ±1, czyli przy x = ±2. To daje nam ekstrema funkcji y (x), a
y (x) = 4x

3y(x)4+x2+1
→ 0 daje nam zachowanie funkcji w granicy.

Przykład. Możemy stosować twierdzenie o funkcji uwikłanej do badania pierwiastków wielomia-
nów. Niech X =

{
(a1, . . . , am, t) ∈ Km ×K : p (a, t) = tm + a1t

m−1 + . . .+ am = 0
}
. W punktach

(a0, t0) ∈ X takich, że ∂p
∂t (a0, t0) ̸= 0 kiełek funkcji (X, (a0, t0)) jest wykresem t = t (a) funkcji

klasy C1, czyli pierwiastki są zależne od współczynników w sposób zadany przez funkcję klasy C1.

13. Różniczki wyższych rzędów
2025-11-06

Definicja 16. Izometrią nazywamy takie odwzorowanie φ : (X, d) → (Y, ρ), które zachowuje odle-
głość: ρ (φ (x) , φ (x′)) = d (x, x′). W szczególności izometria zawsze jest iniekcją 1-lipschitzowską.
Jeśli istnieje surjektywna izometria φ : X → Y , to mówimy, że te przestrzenie są izometryczne.

Uwaga. Ograniczymy się dalej do przestrzeni unormowanych E,F oraz izometrii liniowych φ : E →
F , czyli takich, że ∥φ (x)∥ = ∥x∥.

Twierdzenie 30 (Mazur, Ulam). Izomorfizm izometryczny przestrzeni unormowanych nad R jest
afiniczny, czyli x→ φ (x)− φ (0) jest liniowe.

Przykład. Rozważmy surjektywną izometrię liniową I : E → F , gdzie E,F są przestrzeniami unor-
mowanymi nad K. Skoro I ∈ L (E,F ), to możemy obliczyć jej normę ∥I∥. Dla E = {0} mamy
∥I∥ = 0. W przeciwnym wypadku wobec ∥Ix∥ = ∥x∥ mamy ∥I∥ ≤ 1. Podobnie dla funkcji I−1

mamy
∥∥I−1

∥∥ ≤ 1. Ponadto ∥x∥ =
∥∥I−1Ix

∥∥ ≤ ∥∥I−1
∥∥ ∥Ix∥, więc mamy

1

∥I−1∥
∥x∥ ≤ ∥Ix∥ ≤ ∥I∥ ∥x∥ ,

skąd
∥∥I−1

∥∥ ∥I∥ ≥ 1, czyli
∥∥I−1

∥∥ = ∥I∥ = 1.

Lemat 3. Niech E,F będą przestrzeniami unormowanymi nad K. Niech I : E → F będzie izomor-
fizmem topologicznym takim, że ∥I∥ ≤ 1 oraz

∥∥I−1
∥∥ ≤ 1. W takiej sytuacji I jest izometrią.

Dowód. Mamy ∥Ix∥ ≤ ∥I∥ ∥x∥ ≤ ∥x∥ oraz ∥x∥ =
∥∥I−1Ix

∥∥ ≤ ∥∥I−1
∥∥ ∥Ix∥ ≤ ∥Ix∥. Zatem ∥x∥ =

∥Ix∥, a więc I jest izometrią.
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Propozycja 17. Niech F będzie przestrzenią unormowaną nad K, m ≥ 1. Odwzorowania

I : Lm (K, F ) ∋ f → f (1, . . . , 1) ∈ F,

J : F ∋ v → (Km ∋ (x1, . . . , xm)→ x1 . . . xmv ∈ F ) ∈ Lm (K, F )

są wzajemnie odwrotnymi izometriami liniowymi. Zatem Lm (K, F ) ≃ F .

Dowód. J (v) jest m-liniowe na skończenie wymiarowej przestrzeni Km, więc jest ciągłe. Widać, że
∥J (v)∥ ≤ v, więc ∥J∥ ≤ 1. Ponadto dla f ∈ Lm (K, F ) mamy ∥f (1, . . . , 1)∥ ≤ ∥f∥, stąd ∥I∥ ≤ 1.
To daje nam tezę.

Propozycja 18. Niech E1, E2, F1, F2 będą przestrzeniami unormowanymi nad K, Φ : E1 → E2 i
Ψ : F1 → F2 izometriami liniowymi. Odwzorowanie I : L (E1, F1) ∋ f → Ψ ◦ f ◦ Φ−1 ∈ L (E2, F2) i
jego odwzorowanie odwrotne J (g) = Ψ−1 ◦ g ◦ Φ są izometriami.

Dowód. Oczywiście I i J są liniowe. Mamy ∥I (f)∥ ≤ ∥Ψ∥ ∥f∥
∥∥Φ−1

∥∥ ≤ ∥f∥, więc I jest ciągłe oraz
∥I∥ ≤ 1. Podobnie dla J , więc mamy tezę.

Propozycja 19. Niech E1, . . . , Em, F będą przestrzeniami unormowanymi nad K (m ≥ 2). Odwzo-
rowanie I : L (E1,L (E2, . . . , Em;F ))→ L (E1, . . . , Em;F ) dane wzorem

I (f) = (E1 × . . .× Em ∋ (x1, . . . , xm)→ f (x1) . (x2, . . . , xm) ∈ F )

jest izomorfizmem izometrycznym.

Dowód. ∥f (x1) . (x2, . . . , xm)∥ ≤ ∥f (x1)∥ ∥x2∥ . . . ∥xm∥ ≤ ∥f∥ ∥x1∥ ∥x2∥ . . . ∥xm∥. Z tego mamy
∥I∥ ≤ 1 oraz widzimy, że I (f) faktycznie jest ciągłe.

Odwrotne do I jest J (g) = (E1 ∋ x1 → g (x1, ·, . . . , ·) ∈ L (E2, . . . , Em;F )) Liniowość jest oczy-
wista, ciągłość wynikowego odwzorowania dostajemy tak samo jak przedtem: ∥g (x1, . . . , xm)∥ ≤
∥g∥ ∥x1∥ . . . ∥xm∥, skąd ∥g (x1, ·, . . . , ·)∥ ≤ ∥g∥ ∥x1∥, co daje też ∥J∥ ≤ 1.

Propozycja 20. Niech E1, . . . , Em, F będą przestrzeniami unormowanymi nad K (m ≥ 2). Odzwo-
rowanie

I : L (E1,L (E2,L (E3, . . . ,L (Em, F ))))→ L (E1, . . . , Em;F )

zadane przez I (f) (x1, . . . , xm) = (. . . ((f (x1) .x2) .x3) . . .) .xm ∈ F jest izomorfizmem izometrycz-
nym.

Dowód. Już wiemy, że L (Em−1,L (Em, F )) ≃ L (Em−1, Em;F ) oraz, że możemy zamieniać dzie-
dziny i przeciwdziedziny na izomeryczne, zachowując izomorfizm przestrzeni odwzorowań liniowych
między nimi. Indukcyjnie dostajemy tezę.

Uwaga. Różniczki wyższych rzędów w naturalny sposób są odwzorowaniami wieloliniowymi. Roz-
ważmy różniczkowalne f : U → F . Dostajemy f ′ : U → L (E,F ). Jeśli to odwzorowanie jest róż-
niczkowalne, to dostajemy odwzorowanie pochodne f ′′ = (f ′)

′
: U → L (E,L (E,F )) ≃ L2 (E;F ).

Ponadto w przypadku odwzorowań wieloliniowych na Km mamy identyfikację z elementami F (co
pokrywa się z teorią wprowadzoną nad ciałem). Do tego wiemy, że wszystkie rozważane przestrzenie
są Banacha, więc możemy bez obaw stosować całą wprowadzoną teorię.

Definicja 17. Niech E,F będą przestrzeniami Banacha nad K, A ⊆ E, f : A→ F , a ∈ A. Niech:

1. A(0) = A, f (0) = f ,

2. A(1) =
{
x ∈ A(0) : f (0) różniczkowalna w x

}
⊆ intA(0), f (1) =

(
f (0)

)′
: A(1) → L (E,F )

3. A(2)=
{
x ∈ A(1) : f (1) różniczkowalna w x

}
⊆ intA(1), f (2)=

(
f (1)

)′
: A(2) → L (E,L (E,F ))

4.
...

n. A(n) =
{
x ∈ A(n−1) : f (n−1) różniczkowalna w x

}
⊆ intA(n−1), f (n) =

(
f (n−1)

)′
: A(n) →
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L (E,L (E, . . . ,L (E,F )))

Dostajemy ciąg zbiorów (być może pustych od pewnego momentu) takich, że A = A(0) ⊇ intA(0) ⊇
A(1) ⊇ . . .. Wprowadzone odwzorowania f (n) są takie, że każde jest odwzorowaniem pochodnym
poprzedniego (lub odwzorowaniem pustym, gdy poprzednie nie jest różniczkowalne).

Definicja 18. Niech n ∈ N+. Jeśli a ∈ A(n), to mówimy, że f jest n-krotnie różniczkowalne w a,
natomiast wartość f (n) (a) =: dna f nazywamy n-tą różniczką (Frécheta) lub pochodną f w a. Od-
wzorowanie f (n) : A(n) → Ln (E;F ) (po odpowiedniej identyfikacji) zwiemy n-tym odwzorowaniem
pochodnym.

Notacja. Aż do n = 3 stosujemy klasyczny zapis f ′ := f (1), f ′′ := f (2), f ′′′ := f (3).

Definicja 19. Jeśli n ≥ 1 i A(n) = A, to mówimy, że f : A→ F jest n-krotnie różniczkowalna.

Definicja 20. Odwzorowanie f jest klasy Cn, gdy A(n) = A oraz f (n) : A→ Ln (E;F ) jest ciągłe.

Uwaga. Klasa C0 oznacza ciągłość f . Oczywiście klasa Cn implikuje klasę Ck dla k ≤ n.

Definicja 21. Odwzorowanie f jest klasy C∞, jeśli jest klasy Cn dla każdego n ∈ N+.

Uwaga. Jeśli f : A→ F jest takie, że f = L|A, a L : E → F jest afiniczne, to f jest klasy C∞.

Uwaga. Załóżmy, że f : A→ F jest n-krotnie różniczkowalne w a ∈ A. Mamy utożsamienie dna f =
f (n) (a) ∈ L (E,L (E, . . .L (E,F ))) ≃ Ln (E;F ). Wymiennie piszemy więc f (n) (a) (h1, . . . , hn) =(
. . .
((
f (n) (a) .h1

)
.h2
)
.h3 . . .

)
.hn, gdzie h1, .., hn ∈ E. Dodatkowo jeśli E = K, to wiemy, że

Ln (K, F ) ≃ F , czyli możemy pisać f (n) (a) ∈ F .

Uwaga. Jeśli f : A → F jest dwukrotnie różniczkowalne w a, to nie dość, że a ∈ intA, ale wobec
a ∈ A(2) mamy otoczenie a ∈ U ⊆ A takie, że ∀x∈U ∃ f ′ (x).

Definicja 22. Jeśli dla każdego h ∈ E odwzorowanie fa,h : K ∋ t → f (a+ th) ∈ F jest n-krotnie
różniczkowalne w t = 0 oraz istnieje symetryczne L ∈ Ln (E;F ) takie, że dnfa,h

dtn (0) = L (h, . . . , h)
(symetryczność oznacza niezmienniczość na permutacje argumentów), to mówimy, że f ma w a n-tą
różniczkę Gâteaux. Oznaczamy L = δna f .

Definicja 23. Niech E1, . . . , Em, F będą przestrzeniami Banacha nad K (m ≥ 2). Ustalmy A ⊆
E1 × . . .× Em, f : A→ F . Niech A(0) = A. Działamy indukcyjnie:

Dla i1 ∈ {1, . . . ,m} niech

A
(1)
i1

=

{
x ∈ A(0) : ∃ ∂f

∂xi1
(x)

}
,

∂f

∂xi1
: A

(1)
i1
∋ x→ ∂f

∂xi1
(x) ∈ L (Ei1 , F ) .

Dla i2 ∈ {1, . . . ,m} niech

A
(2)
i1,i2

=

{
x ∈ A(1)

i1
: ∃ ∂

∂xi2

(
∂f

∂xi1

)
(x)

}
,

∂2f

∂xi2∂xi1
: A

(2)
i1,i2
∋ x→ ∂

∂xi2

(
∂f

∂xi1

)
(x) ∈ L (Ei2 ,L (Ei1 , F )) .
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Dla in ∈ {1, . . . ,m} niech

A
(n)
i1,...,in

=

{
x ∈ A(n−1)

i1,...,in−1
: ∃ ∂

∂xin

(
∂n−1f

∂xin−1
. . . ∂xi1

)
(x)

}
,

∂nf

∂xin . . . ∂xi1
: A

(n)
i1,...,in

∋ x→ ∂

∂xin

(
∂n−1f

∂xin−1
. . . ∂xi1

)
(x) ∈ L

(
Ein ,L

(
Ein−1 , . . . ,L (Ei1 , F )

))
.

Definicja 24. Jeśli a ∈ A(n)
i1,...,in

, to ∂nf
∂xin ...∂xi1

(a) nazywamy n-tą różniczką (pochodną) cząstkową
f w a względem (po) xin , . . . , xi1 , gdzie n ≥ 1, i1, . . . , in ∈ {1, ..,m}. Liczbę n nazywamy rzędem
pochodnej cząstkowej. Ponadto jeśli in = in−1 = . . . = i1 = i, to stosujemy zapis ∂nf

∂xn
i
∈ Ln (Ei, F ).

Uwaga. Często dla wygody odwraca się kolejność indeksowania, to znaczy pisząc ∂nf
∂xi1

...∂xin
mamy

na myśli różniczkowanie kolejno po xi1 , . . . , xin .

Twierdzenie 31. Niech E1, . . . , Em, F będą przestrzeniami Banacha nad K (m ≥ 2). Niech E = E1×
. . .×Em, A ⊆ E i niech f : A→ F będzie n-krotnie różniczkowalna w punkcie a. Odwzorowanie f
posiada wszystkie pochodne cząstkowe rzędu n w punkcie a. Do tego po naturalnych utożsamieniach
zachodzą wzory

∂nf

∂xi1 . . . ∂xin
(a) = dna f ◦ (ui1 × . . .× uin) ,

dna f =

m∑
i1,...,in=1

∂nf

∂xi1 . . . ∂xin
(a) ◦ (pi1 × . . .× pin) .

Dowód. Zauważmy, że drugi wzór implikuje pierwszy, bo tylko złożenie rzutowania (pi1 × . . .× pin)
z zanurzeniem (ui1 × . . .× uin), gdzie indeksy się zgadzają, nie ma ani jednej współrzędnej zerowej
(a ta automatycznie zerowałaby odpowiedni składnik sumy).

Drugiego wzoru dowodzimy indukcyjnie. Bazę już mamy. W kroku indukcyjnym z założenia in-
dukcyjnego mamy otoczenie a ∈ U ⊆ A, w którym istnieją ∂n−1f

∂xi2
...∂xin

oraz dla każdego x ∈ U
mamy

dn−1
x f =

m∑
i2,...,in=1

(
Ti2,...,in ◦

∂n−1f

∂xi2 . . . ∂xin

)
,

gdzie Ti2,...,in : L (Ei2 ,L (Ei3 , . . . ,L (Ein , F )))→ L (E, . . . ,L (E,F )) dane jest wzorem(
. . .
((
Ti2,...,in (φ) .h(2)

)
.h(3)

)
. . .
)
.h(n) =

(
. . .
((
φ.h

(2)
i2

)
.h

(3)
i3

)
. . .
)
.h

(n)
in
,

a więc jest liniowe i ciągłe. W związku z tym możemy zróżniczkować i otrzymać

dna f =

m∑
i2,...,in=1

Ti2,...,in ◦ da
(

∂n−1f

∂xi2 . . . ∂xin

)
=

m∑
i2,...,in=1

Ti2,...,in ◦
m∑

i1=1

∂

∂xi1

(
∂n−1f

∂xi2 . . . ∂xin

)
(a) ◦ pi1

=

m∑
i1,...,in=1

Ti2,...,in ◦
∂nf

∂xi1 . . . ∂xin
(a) ◦ pi1 =

m∑
i1,...,in=1

Ti1,...,in ◦
∂nf

∂xi1 . . . ∂xin
(a) .

Twierdzenie 32. Niech E1, . . . , Em, F będą przestrzeniami Banacha nad K (m ≥ 2), niech Ω ∈
topE1 × . . .× Em, f : Ω→ F . Funkcja f jest klasy Cn w Ω wtedy i tylko wtedy, gdy wszystkie jej
pochodne cząstkowe rzędu n istnieją i są ciągłe w Ω.

Dowód. ( =⇒ ) Wiemy już, że istnieją, a z ich postaci wynika ciągłość.
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(⇐= ) Zastosujemy indukcję po n. Dla n = 1 tezę już mamy. Niech g będzie pochodną cząstkową
rzędu n − 1 funkcji f . Z założenia g ma w Ω ciągłe pochodne cząstkowe ∂g

∂xi
. Z tego wynika, że

g jest klasy C1 w Ω. W szczególności g jest ciągła i f jest klasy Cn−1 (na podstawie założenia
indukcyjnego). Ze wzoru f (n−1) (x) =

∑m
i1,...,in−1=1

∂n−1f
∂xi1

...∂xn−1
(x) ◦ (pi1 × . . .× pin) widzimy, że

f (n−1) jest klasy C1, co ostatecznie daje klasę Cn funkcji f .

Uwaga. Weźmy E1, . . . , Em, F będące przestrzeniami Banacha nad K i funkcję f : A → F dwu-
krotnie różniczkowalną w a ∈ A ⊆ E1 × . . .× Em. Wtedy

d2a f. (h, k) =

m∑
i,j=1

∂2f

∂xi∂xj
(a) . (hi, kj) =

m∑
j=1

(
m∑
i=1

∂2f

∂xi∂xj
(a) .hi

)
.kj ,

a to odpowiada „mnożeniu macierzy”:

[k1 . . . km] ·
[

∂2f

∂xi∂xj
(a)

]
i,j=1,...,m

·


h1
...
hm

 .
Jeśli E1 = . . . = Em = K, to macierz

[
∂2f

∂xi∂xj
(a)
]
i,j=1,...,m

ma współczynniki z F i mnożenie polega

na mnożeniu elementów F przez skalary. Dodatkowo dla F = K mamy do czynienia ze zwykłym
mnożeniem macierzy. Macierz tę nazywamy macierzą Hessego, a jej wyznacznik to hesjan.

14. Symetria różniczek
2025-11-07

Twierdzenie 33 (Schwarz). Niech E,F będą przestrzeniami Banacha nad K, a ∈ A ⊆ E i niech
f : A → F będzie dwukrotnie różniczkowalne w a. Wtedy d2a f ∈ L2 (E;F ) jest odwzorowaniem
symetrycznym, czyli d2a f (h, k) = d2a f (k, h).

Dowód. Znajdujemy takie r > 0, że K (a, r) ⊆ A i dla każdego x ∈ K (a, r) istnieje dx f . Dla
(u, v) ∈ K (0, r)×K (0, r) definiujemy

H (u, v) = f (a+ u+ v)− f (a+ u)− f (a+ v) + f (a)− d2a f. (u, v) .

Wiemy, że f ′ jest różniczkowalna w a, więc mamy K (a, 2δ) ⊆ K (a, r) takie, że dla x ∈ K (a, 2δ) jest
∥f ′ (x)− f ′ (a)− f ′′ (a) . (x− a)∥ ≤ ε

2 ∥x− a∥. Ustalmy u ∈ K (0, δ) i oznaczmy gu (v) = H (u, v).
Jest to funkcja różniczkowalna w dowolnym v ∈ K (0, δ). Mamy

g′u (v) = f ′ (a+ u+ v)− f ′ (a+ v)− d2a f.u,

zatem ∥∥g′u (v)± d2a f.v ± f ′ (a)
∥∥ ≤

∥f ′ (a+ u+ v)− f ′ (a)− f ′′ (a) . (u+ v)∥+ ∥f ′ (a+ v)− f ′ (a)− f ′′ (a) .v∥ ≤
ε

2
∥u+ v∥+ ε

2
∥v∥ ≤ ε (∥u∥+ ∥v∥) .

Niech h (v) = ε (∥u∥+ ∥v∥). Dla x = tv przy t ∈ [0, 1] mamy h (x) = ε (∥u∥+ t ∥v∥) ≤ h (v). Zatem
∥g′u (x)∥ ≤ h (x) ≤ h (v), czyli z twierdzenia o przyrostach

∥H (u, v)∥ = ∥gu (v)− gu (0)∥ ≤ h (v) ∥v∥ ≤ ε (∥u∥+ ∥v∥)2 .

Ostatecznie dla ε > 0 znaleźliśmy δ > 0 takie, że jeśli ∥u∥ , ∥v∥ < δ, to∥∥d2a f. (u, v)− d2a f. (v, u)
∥∥ = ∥H (v, u)−H (u, v)∥ ≤ 2ε (∥u∥+ ∥v∥)2 .
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Teraz dla h, k ∈ E\{0} wziąwszy u = h
∥h∥

δ
2 i v = k

∥k∥
δ
2 mamy

∥∥∥ δ2

4∥h∥∥k∥
(
d2a f. (h, k)− d2a f. (k, h)

)∥∥∥ ≤
2εδ2, czyli

∥∥d2a f. (h, k)− d2a f. (k, h)
∥∥ ≤ 8 ∥h∥ ∥k∥ ε = ε′, co kończy dowód.

Twierdzenie 34. Niech E,F będą przestrzeniami Banacha nad K, a ∈ A ⊆ E, niech f : A → F
będzie n-krotnie różniczkowalna. Różniczka dna f jest symetryczna, to znaczy dla każdej permutacji
σ ∈ Sn mamy dna f

(
hσ(1), . . . , hσ(n)

)
= dna f (h1, . . . , hn) dla dowolnych h1, . . . , hn ∈ E.

Dowód. Dowodzimy indukcyjnie, dla n = 2 już mamy. Ustalamy n ≥ 3. Wystarczy pokazać krok
indukcyjny dla σ będącego transpozycją sąsiednich elementów.

Jeśli σ (1) = 1, to niech g : A(n−1) ∋ x → dn−1
x f (h2, . . . , hn) − dn−1

x f
(
hσ(2), . . . , hσ(n)

)
, gdzie

h1, . . . , hn ∈ E są na wstępie ustalone. Na podstawie założenia indukcyjnego g ≡ 0, więc da g.h1 = 0.
Oznaczając h′ = (h2, . . . , hn) wprowadzamy g̃ = vh′ ◦ f (n−1), gdzie vh′ oznacza ewaluację na h′,
która jest liniowa. Zatem da g̃ = vh′ ◦da f (n−1) = vh′ ◦dna f . Analogicznie dla h′′ =

(
hσ(2), . . . , hσ(n)

)
wprowadzamy g̃2 = vh′′ ◦ f (n−1), mamy da g̃2 = vh′′ ◦ dna f . Jest g = g̃ − g̃2, czyli 0 = da g.h1 =
da g̃.h1 − da g̃2.h1 = (dna f.h1) . (h2, . . . , hn) − (dna f.h1) .

(
hσ(2), . . . , hσ(n)

)
= dna f (h1, . . . , hn) −

dna f
(
hσ(1), . . . , hσ(n)

)
.

Jeśli σ (1) = 2, to σ (2) = 1 i σ (i) = i dla i > 2. Wtedy f (n−2) jest dwukrotnie różniczkowalna w
a, więc d2a f

(n−2) jest symetryczna. Ale d2a f
(n−2) = dna f , czyli (dna f.h1) .h2 = (dna f.h2) .h1, zatem

obkładając pozostałymi argumentami dostajemy pożądaną równość dla σ.

Twierdzenie 35. Niech A ⊆ Km dla m ≥ 2, niech F będzie przestrzenią Banacha nad K. Weźmy f :
A→ F , która jest n-krotnie różniczkowalna w a ∈ A. Wybierzmy i1, . . . , in ∈ {1, . . . ,m} i σ ∈ Sn.
Po identyfikacji różniczek cząstkowych z elementami F mamy ∂nf

∂xi1
...∂xin

(a) = ∂nf
∂xiσ(1)

...∂xiσ(n)

(a).

Dowód. Mamy ∂nf
∂xi1

...∂xin
(a) = dna f (ei1 , . . . , ein) i stosujemy twierdzenie o symetrii różniczki.

Przykład. Niech f (x, y) = xy. Wtedy

d2a f ((h1, h2) , (k1, k2)) =
[
h1 h2

] [ ∂2f
∂x2 (a)

∂2f
∂y∂x (a)

∂2f
∂x∂y (a) ∂2f

∂y2 (a)

][
k1

k2

]
=
[
h1 h2

] [0 1

1 0

][
k1

k2

]
= h1k2+h2k1.

Uwaga. Symetria pochodnych cząstkowych jest warunkiem koniecznym różniczkowalności odpo-
wiedniego rzędu.

Notacja. Gdy wiemy, że pochodne cząstkowe nie zależą od kolejności indeksów możemy zapisać

∂nf

∂xi1 . . . ∂xin
(a) =

∂nf

(∂x1 . . . ∂x1) . . . (∂xm . . . ∂xm)
(a) =

∂nf

∂xα1
1 . . . ∂xαm

m
(a) =:

∂|α|f

∂xα
(a) ,

gdzie α = (α1, . . . , αm) ∈ Nm
+ jest wielowskaźnikiem długości n = |α| = α1 + . . . + αm. Pojawiają

się też oznaczenia ∂|α|f
∂xα (a) = Dαf (a) = ∂αf (a). Jeśli dodatkowo położymy α! = α1! · . . . · αm!, to

wszystkich permutacji dających tę samą pochodną cząstkową w a jest n!
α! .

15. Własności odwzorowań wielokrotnie różniczkowalnych
2025-11-13

Uwaga. Przypomnijmy, że odwzorowania afiniczne zacieśnione do zbioru otwartego są klasy C∞ i
mają zerowe pochodne stopnia większego niż 1.

Odwzorowanie dwuliniowe f ∈ L (E,F ;G) jest klasy C∞, bo mamy d(x,y) f (h, k) = f (x, k)+f (h, y),
czyli f ′ jest liniowe (na E × F ), czyli f ′′ ≡ f ′ (odwzorowanie stałe, zawsze równe f ′) i f ′′′ ≡ 0.

Jeśli A jest przemienną algebrą Banacha z jedynką, to exp : A → A jest klasy C∞ i mamy
exp(n) . (h1, . . . , hn) = exp (a) .h1 · . . . · h2.
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Propozycja 21. Niech E,F,G będą przestrzeniami Banacha nad K, a ∈ A ⊆ E oraz niech f : A→ F
będzie n-krotnie różniczkowalna w a (klasy Cn) [klasy C∞]. Wtedy dla L ∈ L (F,G) odwzorowanie
L ◦ f jest n-krotnie różniczkowalne (klasy Cn) [klasy C∞].

Dowód. Dla n = 1 twierdzenie jest znane. Pokażemy krok indukcyjny dla n ≥ 2. f ′ jest (n− 1)-
krotnie różniczkowalne w a, więc ϕ ◦ f ′ jest (n− 1)-krotnie różniczkowalne, gdzie ϕ : L (E,F ) ∋
ℓ → L ◦ ℓ ∈ L (E,G). Teraz (ϕ ◦ f ′) (x) = L ◦ f ′ (x) = dx (L ◦ f), co oznacza, że (L ◦ f)′ jest
(n− 1)-krotnie różniczkowalne. To daje nam tezę w pierwszej wersji. Pozostałych wersji dowodzimy
identycznie. To daje nam odpowiednie własności.

Twierdzenie 36. Niech E,F1, . . . , Fm będą przestrzeniami Banacha nad K, a ∈ A ⊆ E. Niech fi :
A→ Fi będzie n-krotnie różniczkowalne w a (klasy Cn) [klasy C∞]. Odwzorowanie f = (f1, . . . , fm)
jest n-krotnie różniczkowalne (klasy Cn) [klasy C∞].

Dowód. Mamy f ′ = ϕ ◦ (f ′1, . . . , f ′m), gdzie

ϕ :

m∏
i=1

L (E,Fi) ∋ (ℓ1, . . . , ℓm)→ (ℓ1, . . . , ℓm) ∈ L (E,F1 × . . .× Fm) .

Tezę dla n = 1 mamy, pokazujemy krok indukcyjny dla n > 1. (f ′1, . . . , f
′
m) ma odpowiednią

własność, natomiast ϕ jest klasy C∞, więc założenie jest spełnione dla f ′ = ϕ ◦ (f ′1, . . . , f ′m).

Twierdzenie 37. Niech E,F,G będą przestrzeniami Banacha nad K, a ∈ A ⊆ E, f : A → B ⊆ F ,
g : B → G. Oznaczmy b = f (a). Jeśli f jest n-krotnie różniczkowalne w a, a g jest n-krotnie
różniczkowalne w b, to g ◦ f jest n-krotnie różniczkowalne w a (odpowiednio mamy klasę Cn lub
C∞).

Dowód. Ponownie indukcja, dla n = 1 wynik jest znany. Mamy (g ◦ f)′ = ϕ ◦ (g′ ◦ f, f ′), gdzie
ϕ : L (F,G)× L (E,F ) ∋ (u, v)→ u ◦ v ∈ L (E,G) jest dwuliniowe, więc klasy C∞.

Uwaga. Korzystając z twierdzenia o złożeniach możemy dowodzić dalszych rezultatów tego typu,
np. dla iloczynu kartezjańskiego.

Twierdzenie 38. Niech A będzie algebrą Banacha z jedynką nad K. Odwzorowanie ξ : G (A) ∋ x→
x−1 ∈ G (A) jest klasy C∞.

Dowód. Wiemy, że dx ξ.h = −x−1 · h · x−1 i ξ′ = ϕ ◦ (−ξ, ξ), gdzie ϕ : A × A ∋ (x, y) →
(A ∋ h→ x.h.y ∈ A) ∈ L (A,A). ϕ jest dwuliniowe, więc klasy C∞.

Wiemy, że ξ jest klasy C1, więc ξ′ jest klasy C1, czyli ξ jest klasy C2. Możemy powtórzyć ten
argument dowolnie wiele razy.

Twierdzenie 39. Niech E,F będą takimi przestrzeniami Banacha nad K, że Isom (E,F ) ̸= ∅. Roz-
ważmy η : Isom (E,F ) ∋ f → f−1 ∈ Isom (F,E). η jest klasy C∞.

Dowód. Ustalmy φ ∈ Isom (F,E) i oznaczmy φ⋆ : L (E,F ) ∋ L → L ◦ φ ∈ L (F, F ) oraz φ⋆ :
L (F, F ) ∋ L→ φ◦L ∈ L (F,E). Oba te odwzorowania są klasy C∞. Mamy η = φ⋆ ◦ξ ◦φ⋆|Isom(E,F ),
co jest złożeniem odwzorowań klasy C∞.

Definicja 25. Niech E,F będą przestrzeniami Banacha nad K, U ∈ topE, V ∈ topF . Dla f : U → V
i k ∈ N+∪{∞} mówimy, że f jest Ck-dyfeomorfizmem, jeśli jest bijekcją klasy Ck, której odwrotność
również jest klasy Ck.

Uwaga. Zwykły dyfeomorfizm jest C1-dyfeomorfizmem.

Twierdzenie 40. Niech f będzie dyfeomorfizmem klasy Ck. Wtedy f jest Ck-dyfeomorfizmem.

Dowód. Niech g = f−1. Mamy dy g =
(
dg(y) f

)−1. Stąd wynika g′ = η ◦ f ′ ◦ g, zatem jeśli f jest
klasy C2, to g′ jest klasy C1, czyli g jest klasy C2. Możemy powtórzyć ten argument dowolnie wiele
razy (aż do Ck).
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Twierdzenie 41. Niech E,F będą przestrzeniami Banacha nad K, niech a ∈ Ω ∈ topE i k ∈
N+ ∪ {∞}. Ustalmy f : Ω→ F klasy Ck takie, że da f ∈ Isom (E,F ). Istnieją otoczenia a ∈ U ⊆ Ω
i f (a) ∈ V ⊆ F takie, że f (U) = V oraz f |U : U → V jest Ck-dyfeomorfizmem.

Dowód. Z twierdzenia o lokalnym dyfeomorfizmie wiemy, że f |U jest dyfeomorfizmem klasy Ck dla
pewnego otoczenia U . Zatem f |U jest Ck-dyfeomorfizmem.

Twierdzenie 42. Niech E,F,G będą przestrzeniami Banacha nad K. Niech Ω ∈ top (E × F ) oraz
niech f : Ω ∋ (x, y) → f (x, y) ∈ G będzie klasy Ck dla ustalonego k ∈ N+ ∪ {∞}. Ustalmy
(a, b) ∈ f−1 (0). Zakładamy, że ∂f

∂y (a, b) ∈ Isom (F,G). W takiej sytuacji istnieją otoczenia a ∈
U ⊆ E, b ∈ V ⊆ F oraz odwzorowanie g : U → V klasy Ck takie, że U × V ⊆ Ω oraz (x, y) ∈
U × V ∩ f−1 (0) ⇐⇒ y = g (x) (to znaczy U × V ∩ f−1 (0) jest wykresem g).

Dowód. Powtarzamy dowód twierdzenia o funkcji uwikłanej, pojawia się w nim dyfeomorfizm klasy
Ck, więc jest to Ck-dyfeomorfizm. Druga współrzędna jego odwrotności jest klasy Ck, a to jest
właśnie g.

Uwaga. Oba powyższe twierdzenia zachodzą też dla Cω.

16. Wzór Taylora
2025-11-14

Notacja. Dla φ ∈ Lk (E;F ) piszemy φ. (h)k := φ (h, . . . , h)︸ ︷︷ ︸
k razy

.

Definicja 26. Niech E,F będą przestrzeniami Banacha nad K, a ∈ A ⊆ E. Dla funkcji f : A→ F ,
która jest n-krotnie różniczkowalna w a n-tym wielomianem Taylora f w punkcie a nazywamy

Tn
a f (h) =

n∑
k=0

1

k!
f (k) (a) . (h)

k
.

Notacja. Dalej ustalamy U ∈ topR, przestrzeń Banacha F nad K i funkcję v : U → F , która jest
n-krotnie różniczkowalna. Będziemy rozważać funkcję

φ : U ∋ t→ v (t) +
1− t
1!

v′ (t) +
(1− t)2

2!
v′′ (t) + . . .+

(1− t)n

n!
v(n) (t) ∈ F.

Lemat 4. Niech v będzie (n+ 1)-krotnie różniczkowalna w U . Wtedy φ′ (t) = (1−t)n

n! v(n+1) (t) dla
każdego t ∈ U .

Dowód.

φ′ (t) = v′ (t) +

[
−v′ (t) + 1− t

1!
v′′ (t)

]
+

[
−2 (1− t)

2!
v′′ (t) +

(1− t)2

2!
v′′′ (t)

]
+ . . .+[

−n (1− t)
n−1

n!
v(n) (t) +

(1− t)n

n!
v(n+1) (t)

]
=

(1− t)n

n!
v(n+1) (t) .

Lemat 5. Niech v będzie (n+ 1)-krotnie różniczkowalna w U . Niech [0, 1] ⊆ U i niech M ≥ 0 będzie
takie, że dla każdego t ∈ [0, 1] mamy

∥∥v(n+1) (t)
∥∥ ≤M . Wtedy ∥φ (1)− φ (0)∥ ≤ M

(n+1)! .

Dowód. Niech g : U ∋ t → −M (1−t)n+1

(n+1)! ∈ R. Na [0, 1] mamy g′ (t) = M (1−t)n

n! , zatem z założenia

∥φ′ (t)∥ = (1−t)n

n!

∥∥v(n+1) (t)
∥∥ ≤ g′ (t). Z tego wynika ∥φ (1)− φ (0)∥ ≤ g (1)− g (0) = M

(n+1)! .
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Lemat 6. Niech v będzie klasy Cn+1 i niech [0, 1] ⊆ U . Wtedy φ (1)−φ (0) =
∫ 1

0
(1−t)n

n! v(n+1) (t) dt.

Dowód. Wiemy już, że φ jest funkcją pierwotną funkcji całkowanej. Teza zachodzi z definicji całki
oznaczonej.

Uwaga. Jeśli E,F są przestrzeniami Banacha nad K, a ∈ Ω ⊆ E, h ∈ E i [a, a+ h] ⊆ Ω oraz
funkcja f : Ω → F jest k-krotnie różniczkowalna, to dla v (t) = f (a+ th) zdefiniowanego na
U = {t ∈ R : a+ th ∈ Ω} mamy dt v.1 = da+th f.h ∈ F , zatem można utożsamić v′ (t) = da+th f.h.
Różniczkując wielokrotnie dostaniemy v(k) (t) = f (k) (a+ th) . (h)

k.

Twierdzenie 43 (O wielomianie Taylora z resztą Lagrange’a). Niech rozważana funkcja f będzie
(n+ 1)-krotnie różniczkowalna w Ω oraz niech M ≥ 0 będzie takie, że

∥∥f (n+1) (x)
∥∥ ≤ M dla

x ∈ [a, a+ h]. Wtedy ∥f (a+ h)− Tn
a f (h)∥ ≤ M

(n+1)! ∥h∥
n+1.

Dowód. Funkcja v (t) = f (a+ th) jest (n+ 1)-krotnie różniczkowalna w U . Mamy∥∥∥v(n+1) (t)
∥∥∥ =

∥∥∥f (n+1) (a+ th) . (h)
n+1
∥∥∥ ≤ ∥∥∥f (n+1) (a+ th)

∥∥∥ ∥h∥n+1 ≤M ∥h∥n+1
,

zatem ∥f (a+ h)− Tn
a f (h)∥ = ∥φ (1)− φ (0)∥ ≤ M∥h∥n+1

(n+1)! .

Twierdzenie 44 (O wielomianie Taylora z resztą całkową). Niech rozważana funkcja f będzie klasy
Cn+1 w Ω. Wtedy f (a+ h) = Tn

a f (h) +
∫ 1

0
(1−t)n

n! f (n+1) (a+ th) . (h)
n+1

dt.

Dowód. Mamy f (a+ h) − Tn
a f (h) = φ (1) − φ (0) =

∫ 1

0
(1−t)n

n! v(n+1) (t) dt, a to jest równe temu,
co trzeba.

Twierdzenie 45 (O wielomianie Taylora z resztą Peany). Niech a ∈ Ω ∈ topE i niech f : Ω → F
będzie n-krotnie różniczkowalna w a. Wtedy f (a+ h) = Tn

a f (h) + o (∥h∥n) przy h→ 0.

Dowód. Przeprowadzimy indukcję po n. W bazie dla n = 1 dostajemy definicję różniczkowalności:
f (a+ h) = f (a) + da f (h) + o (∥h∥). Pokażemy krok indukcyjny dla n ≥ 2.

Rozważmy funkcję R : (Ω− a) ∋ h→ f (a+ h)−Tn
a f (h). Mamy R (0) = 0 i możemy zróżniczkować

R, bo z n ≥ 2 mamy, że f da się chociaż raz zróżniczkować w pewnym otoczeniu a. Zauważmy, że
składniki sumowane w Tn

a f (h) są postaci Fk = f (k) (a)◦δk, gdzie δk (h) = (h)
k
= (h, . . . , h). Mamy

dh Fk.h = d(h)k f
(k) (a) ◦ δk.h = d(h)k f

(k) (a) .
(
h
)k

=

k∑
i=1

f (k) (a) .(h, . . . , h︸︷︷︸
i

, . . . , h) = k · (f ′)(k−1)
(h)

k−1
.h,

gdzie trzecie przejście to różniczka odwzorowania k-liniowego, a ostatnie to skorzystanie z symetrii
pochodnych. Zatem

R′ (h) = f ′ (a+ h)− f ′ (a)− 1

2!
· 2 (f ′)′ (h)− . . .− 1

n!
· n (f ′)(n−1)

(h)
n−1

,

czyli z założenia indukcyjnego R′ (h) = o
(
∥h∥n−1

)
. Znaczy to, że dla ε > 0 i odpowiedniego

δ > 0 mamy ∥h∥ < δ =⇒ ∥R′ (h)∥ ≤ ε ∥h∥n−1. Zatem z twierdzenia o przyrostach mamy
∥R (h)∥ = ∥R (h)−R (0)∥ ≤ ε ∥h∥n−1 ∥h∥, co kończy dowód.

Uwaga. W przypadku E = Km chcielibyśmy wyrazić wielomian Taylora za pomocą pochodnych
cząstkowych, które utożsamiają się z elementami F . Dla h = (h1, . . . , hm) ∈ Km mamy

f (k) (a) . (h)
k
=

m∑
i1,...,ik=1

∂kf

∂xi1 . . . ∂xik
(a)hi1 · . . . · hik =

∑
α∈Nm

|α|=k

k!

α!
Dαf (a) .hα,
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gdzie czynnik k!
α! jest liczbą permutacji indeksów dających tą samą pochodną. Zatem

f (a+ h) =
∑

α∈Nm

|α|≤n

1

α!
Dαf (a) .hα + o (∥h∥n) .

17. Wielomiany jednorodne i symetryczne
2025-12-04

Definicja 27. Niech V,W będą przestrzeniami wektorowymi nad K. Funkcja φ : V → W jest
wielomianem jednorodnym stopnia k ∈ N, gdy dla k = 0 mamy φ ≡ const, a dla k ≥ 1 istnieje
k-liniowe Φ : V k →W takie, że Φ◦∆k = φ, gdzie ∆k : V ∋ x→ (x, . . . , x) ∈ V k. Ogół wielomianów
jednorodnych stopnia k oznaczamy Qk (V,W ).

Uwaga. Qk (V,W ) jest przestrzenią wektorową, dla φ ∈ Qk (V,W ) mamy φ (λx) = λkφ (x) dla
λ ∈ K i x ∈ V oraz φ (0) = 0 przy k > 0.

Przykład. Funkcja φ : K ∋ x→ axk ∈ K pochodzi od Φ : Kk ∋ (x1, . . . , xk)→ ax1 · . . . · xk ∈ K.

Funkcja φ (x, y) = x2y ∈ Q3

(
K2,K

)
nie pochodzi od Φ (x, y, z) = xyz, bo szukamy 3-liniowej

funkcji Φ :
(
K2
)3 → K, odpowiednia jest na przykład Φ ((x1, y1) , (x2, y2) , (x3, y3)) = x1x2y1.

Gdybyśmy żądali symetrii Φ, to istnieje dokładnie jedna taka funkcja, w tym wypadku jest nią
Φ = 1

3 (x1x2y3 + x1y2x3 + y1x2x3).

Ogólnie dla V = Km i φ (x) = axk1
1 . . . xkm

m przy k = k1 + . . .+ km działa

Φ
(
x(1), . . . , x(k)

)
= a

k1∏
j1=1

x
(j1)
1

k1+k2∏
j2=k1+1

x
(j2)
2 . . .

k1+...+km∏
jm=k1+...+km−1+1

x(jm)
m .

Notacja. Wprowadzamy następujące oznaczenia:

Hom(V,W ) = {L : V →W | L liniowe} ,

Homk (V,W ) =
{
Φ : V k →W | Φ k-liniowe

}
,

Homsym
k (V,W ) = {Φ ∈ Homk (V,W ) | Φ symetryczne} ,

∆̃k : Homk (V,W ) ∋ Φ→ Φ ◦∆k ∈ Qk (V,W ) .

Lemat 7 (Uogólnione twierdzenie Cramera). Dla A ∈ Mk×k (K) takiej, że detA ̸= 0 rozważamy
krotkę wektorów v ∈ V k ≃Mk×k (K) taką, że Av = 0 ∈ V k. Wtedy v = 0.

Dowód. Niech µ ∈ V ∗ będzie pewnym funkcjonałem liniowym i niech µ̂ = µ× . . .× µ︸ ︷︷ ︸
k razy

. Wtedy

Aµ̂ (v) = µ̂ (Av) = 0. Ustalmy v = (v1, . . . , vk) oraz A =


a(1)

...
a(k)

 przy a(i) ∈ Kk. Zachodzi Av =


〈
a(1), v

〉
...〈

a(k), v
〉
, gdzie

〈
a(i), v

〉
=
∑k

j=1 a
(i)
j vj ∈ V . To daje nam µ

(〈
a(i), v

〉)
=
∑k

j=1 a
(i)
j µ (vj) =

〈
a(i), µ̂ (v)

〉
, czyli µ̂ (Av) =


〈
a(1), µ̂ (v)

〉
...〈

a(k), µ̂ (v)
〉
 = Aµ̂ (v).

Do układu równań Aµ̂ (v) = 0 w Kk można stosować klasyczne twierdzenie Cramera – jedynym
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rozwiązaniem jest µ̂ (v) = 0 ∈ Kk, czyli µ (v1) = . . . = µ (vk) = 0. Zauważmy, że ta równość
zachodzi dla dowolnego funkcjonału µ ∈ V ∗. Z tego wynika v1 = . . . = vk = 0.

Uwaga. Dla t1, . . . , tk ∈ K macierzą Vandermonda nazywamy macierz
1 t1 . . . tk−1

1

1 t2 . . . tk−1
2

...
...

. . .
...

1 tk . . . tk−1
k

 .

Jej wyznacznik, czasem zwany vandermondianem, wynosi
∏

1≤i<j≤k (tj − ti).

Twierdzenie 46. Niech V,W będą przestrzeniami wektorowymi nad K, φ ∈ Qk (V,W ) dla k ≥ 1. W
takiej sytuacji istnieje dokładnie jedno Φ ∈ Homsym

k (V,W ) takie, że Φ ◦∆k = φ. Inaczej mówiąc,
∆̃k|Homsym

k (V,W ) jest izomorfizmem na Qk (V,W ).

Dowód. Dla σ ∈ Sk niech πσ (v1, . . . , vk) =
(
vσ(1), . . . , vσ(k)

)
. Rozważmy symetryzację zadaną przez

s : Homk (V,W ) ∋ Φ→ 1
k!

∑
σ∈Sk

Φ ◦ πσ ∈ Homsym
k (V,W ). Mamy πσ ◦∆k = ∆k, więc

s (Φ) ◦∆k =
1

k!

∑
σ∈Sk

Φ ◦ πσ ◦∆k =
k!

k!
Φ ◦∆k = Φ ◦∆k.

Zatem jeśli φ = Φ′ ◦∆k, to φ = s (Φ′) ◦∆k i s (Φ′) ∈ Homsym
k (V,W ) jest odpowiednim odwzorowa-

niem. Pozostało wykazać jego jedyność. W tym celu wystarczy pokazać, że jeśli Φ ∈ Homsym
k (V,W )

i Φ ◦∆k ≡ 0, to Φ ≡ 0.

Dla k = 1 jest to oczywiste. Dla k = 2 weźmy Φ ∈ Homsym
2 (V,W ) takie, że Φ (x, x) = 0 dla każdego

x ∈ V . Wtedy dla x, y ∈ V jest 0 = Φ (x+ y, x+ y) = 2Φ (x, y). Zatem Φ (x, y) = 0.

Pokażemy krok indukcyjny dla k+1. Ustalmy Φ ∈ Homsym
k+1 (V,W ) takie, że Φ◦∆k+1 ≡ 0. Wystarczy

pokazać, że Φ (x, . . . , x, y) = 0 dla każdych x, y, bo przy ustalonym y dostajemy odwzorowanie k-
liniowe, które jest zerowe z indukcji. Z dowolności y dostaniemy Φ ≡ 0. Dla u, v ∈ V mamy

0 = Φ (u+ v, . . . , u+ v) =

k+1∑
j=0

(
k + 1

j

)
Φ(u, . . . , u︸ ︷︷ ︸

j razy

, v, . . . , v︸ ︷︷ ︸
k+1−j razy

).

Dla u = x, v = ℓy daje nam to

0 =

(
k + 1

1

)
Φ (x, ℓy, . . . , ℓy) +

(
k + 1

2

)
Φ (x, x, ℓy, . . . , ℓy) + . . .+

(
k + 1

k

)
Φ (x, . . . , x, ℓy) =(

k + 1

1

)
ℓkΦ (x, y, . . . , y) +

(
k + 1

2

)
ℓk−1Φ (x, x, y, . . . , y) + . . .+

(
k + 1

k

)
ℓΦ (x, . . . , x, y) .

Ten napis można potraktować jak równanie z niewiadomymi zk+1−j =
(
k+1
j

)
Φ (x, . . . , x, y, . . . , y).

Dla ℓ przyjmującego wartości 1, . . . , k dostajemy układ równań liniowych zadany macierzą

A =


1 1 . . . 1

2 22 . . . 2k

...
...

. . .
...

k k2 . . . kk

 .

Po wydzieleniu kolejnych wierszy przez 1, 2, . . . , k dostajemy macierz Vandermonda. Zatem detA =
k!
∏

1≤i<j≤k (j − i) ̸= 0. Z uogólnionego twierdzenia Cramera jedyne rozwiązanie to z1 = . . . zk = 0.
W szczególności 0 = z1 =

(
k+1
k

)
Φ (x, . . . , x, y), co daje tezę.
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Propozycja 22 (Wzór polaryzacyjny). Dla φ ∈ Qk (V,W ) odwzorowanie Φ ∈ Homsym
k (V,W ) takie,

że φ = Φ ◦∆k jest zadane przez

Φ (v1, . . . , vk) =
1

k!

∑
ε1,...,εk∈{0,1}

(−1)k−(ε1+...+εk) φ (ε1v1 + . . .+ εkvk) .

Dowód. Od razu widać, że Φ jest symetryczne. Pozostaje pokazać φ = Φ ◦∆k. Mamy

Φ (v, . . . , v) =
1

k!

∑
ε1,...,εk∈{0,1}

(−1)k−(ε1+...+εk) φ (ε1v + . . .+ εkv) =

1

k!

∑
ε1,...,εk∈{0,1}

(−1)k−(ε1+...+εk) (ε1 + . . .+ εk)
k
φ (v) =

1

k!

k∑
i=0

(−1)k−i

(
k

i

)
ikφ (v) .

Pozostaje pokazać, że
∑k

i=0 (−1)
k−i (k

i

)
ik = k!. Zauważmy, że k! jest liczbą bijekcji (a więc surjekcji)

między {1, . . . , k} a {1, . . . , k}. Oznaczmy przez Ai zbiór takich funkcji {1, . . . , k} → {1, . . . , k},
które nie przyjmują wartości i. Mamy

k! = kk −

∣∣∣∣∣
k⋃

i=1

Ai

∣∣∣∣∣ = kk −
k∑

r=1

(−1)r+1
∑

1≤i1<...<ir≤k

|Ai1 ∩ . . . ∩Air | =

kk −
k∑

r=1

(−1)r+1

(
k

r

)
(k − r)k = kk −

k−1∑
i=0

(−1)k−i+1

(
k

i

)
ik =

k∑
i=0

(−1)k−i

(
k

i

)
ik.

Definicja 28. Niech V,W będą przestrzeniami wektorowymi nad K, a k ∈ N. Odwzorowanie φ : V →
W nazywamy wielomianem stopnia nie większego niż k, gdy istnieją φi ∈ Qi (V,W ) dla i = 0, . . . , k
takie, że φ = φ0 + . . . + φk. Jeśli φk ̸= 0, to k nazywamy stopniem φ i oznaczamy degφ. Ogół
wielomianów stopnia co najwyżej k oznaczamy Pk (V,W ). Oznaczamy P (V,W ) =

⋃∞
k=0 Pk (V,W ).

Uwaga. φ ≡ 0 jest dowolnego stopnia, a Pk (V,W ) jest przestrzenią wektorową nad K.

Łatwo sprawdzić, że dla V = Km, W = K mamy Pk (V,W ) = Kk [x1, . . . , xm].

Propozycja 23. Dla przestrzeni unormowanych E i F nad K wielomian φ = φ0+ . . . φk ∈ Pk (E,F )
jest ciągły wtedy i tylko wtedy, gdy każde φi ∈ Qi (V,W ) jest ciągłe, co jest równoważne temu, że
każde odwzorowanie Φi ∈ Homsym

i (E,F ) jest ciągłe, to znaczy Φi ∈ Lsym
i (E,F ).

Dowód. Ciągłość każdego φi oczywiście implikuje ciągłość φ. Dla dowodu w drugą stroną zauważmy,
że dla ℓ = 1, . . . , k i ustalonego x ∈ E równania postaci φ (ℓx) =

∑k
i=0 ℓ

iφi (x) tworzą układ równań
liniowych o zmiennych φi (x). Macierz tego układu to macierz Vandermonda, a więc jest odwracalna
i istnieje rozwiązanie φi (x) =

∑k
j=0 aijφ (jx). Zatem φi jest kombinacją liniową funkcji ciągłych.

Ciągłość Φi oczywiście implikuje ciągłość φi, natomiast wzór polaryzacyjny daje drugą implikację.

Definicja 29. Niech E,F będą przestrzeniami Banacha nad K, a ∈ A ⊆ E, f : A→ F . O wielomianie
φ ∈ Pk (E,F ) mówimy, że jest rozkładem skończonym rzędu k funkcji f w punkcie a, jeśli f (a+ x) =

φ (x) + o
(
∥x∥k

)
(przy x→ 0).

Uwaga. f jest ciągła w a wtedy i tylko wtedy, gdy istnieje rozkład skończony f rzędu 0 w a.

f jest różniczkowalna w a wtedy i tylko wtedy, gdy istnieje rozkład skończony ciągły f rzędu 1 w a.

Propozycja 24. Załóżmy, że f ma rozkład skończony rzędu k w a. Rozkład ten jest wyznaczony
jednoznacznie.
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Dowód. Niech φ,ψ ∈ Pk (E,F ) będą odpowiednimi rozkładami. Rozważmy ρ = φ−ψ ∈ Pk (E,F ).
Oczywiście ρ (x) = o

(
∥x∥k

)
w zerze. Jeśli ρ ̸= 0, to w postaci ρ = ρ0+. . .+ρk istnieje i ∈ {0, . . . , k}

takie, że ρi ̸= 0. Wybierzmy minimalne i0 spełniające tę własność i niech v ∈ E \ {0} będzie takie,
że ρi0 (v) ̸= 0. Mamy ρ(tv)

∥tv∥k → 0 przy t → 0+. Zachodzi to również dla wykładników j < k, bo

∥tv∥j ≥ ∥tv∥k dla odpowiednio małego t. W szczególności

0← ρ (tv)

∥tv∥i0
=
ρi0 (tv) + . . .+ ρk (tv)

∥tv∥i0
=
ti0ρi0 (v) + . . .+ tkρk (v)

ti0 ∥v∥i0
=

ρi0 (v) + . . .+ tk−i0ρk (v)

∥v∥i0
→ ρi0 (v)

∥v∥i0
̸= 0.

To daje sprzeczność i kończy dowód.

Uwaga. Jeśli f jest n-krotnie różniczkowalne w a, to dka f ∈ L
sym
k (E,F ). Zatem we wzorze Taylora

sumujemy wielomiany jednorodne i ciągłe h → dka f. (h)
k. Zatem Tn

a f ∈ Pn (E,F ) i jest klasy C∞.
Twierdzenie o wielomianie Taylora z resztą Peany mówi, że f ma rozkład skończony rzędu n, który
jest ciągły i jest on wyznaczony jednoznacznie.

Przykład. Niech f (x, y) = 1+ x2 + x3y+ x7 + y9x. Chcemy znaleźć wzór Taylora z resztą Peany w
zerze rzędu 5. Nasza funkcja już jest wielomianem, zatem wystarczy usunąć z niej jednomiany za
dużego stopnia i φ (x, y) = 1 + x2 + x3y, natomiast x7 + y9x = o

(
∥(x, y)∥5

)
.

Uwaga. Znając wielomian Taylora możemy zastosować wzór polaryzacyjny do kolejnych wielomia-
nów jednorodnych w tym rozkładzie skończonym, odzyskując w ten sposób różniczki (w zerze).

Uwaga. Dla Q ∈ Qk (E,F ) mamy warunek równoważny ciągłości postaci ∥Q (x)∥ ≤ const ∥x∥k i
wtedy Q (x) = o (∥x∥p) dla p < k.

18. Szeregi Taylora
2025-12-05

Definicja 30. Jeśli E,F są przestrzeniami Banacha nad K, a ∈ A ⊆ E, f : A → F i f ma w a
różniczki wszystkich rzędów, to rozważamy szereg funkcyjny Taf (h) =

∑∞
n=1

1
n! d

n
a f (h)

n.

Dla E = Rm i F = R rozważamy funkcję f : (Rm, 0) → R klasy C∞ i tworzymy szereg formalny
R [[x1, . . . , xm]] ∋ T0f =

∑
α∈Nm

1
α!

∂|α|f
∂xα (0)xα.

Twierdzenie 47 (Borel). Odwzorowanie C∞ (Rm) ∈ f → T0f ∈ R [[x1, . . . , xm]] jest epimorfizmem,
to znaczy dla dowolnie wybranych (cα)α∈Nm ⊆ R zawsze znajdziemy funkcję f klasy C∞ taką, że
∂|α|f
∂xα (0) = cα.

Uwaga. Nad C takie twierdzenie nie zachodzi. Istotnie, już sama C-różniczkowalność wymusza
analityczność, co oznacza zbieżność T0f i ogranicza to, jaki to może być szereg.

Uwaga. Sumy cząstkowe T0f to T k
0 f =

∑
|α|≤k

1
α!

∂|α|f
∂xα (0)xα i zgodnie z twierdzeniem o wielomianie

Taylora mamy f (x) = T k
0 f (x) + o

(
∥x∥k

)
. Sam szereg T0f może być:

1. zbieżny w otoczeniu zera do f – wtedy f jest K-analityczna w zerze.

2. zbieżny w otoczeniu zera, ale nie do f , np. dla f (x) =

{
e−

1
x2 x ∈ R \ {0}

0 x = 0
wychodzi T0f ≡ 0.

3. rozbieżny, to znaczy promień zbieżności wynosi 0.
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Uwaga. Odnotujmy, że zbieżny szereg potęgowy S (x) =
∑

α∈Nm aα (x− a)α jest funkcją klasy C∞

oraz aα = 1
α!

∂|α|S
∂xα (a). Wynika to z tego, że ∂|α|S

∂xα (x) =
∑

β≥α
β!

(β−α)!aβ (x− a)
β−α i ten szereg jest

zbieżny w tym samym polidysku, co wyjściowy szereg.

19. Ekstrema funkcji
2025-12-05

Definicja 31. Niech (X, τ) będzie przestrzenią topologiczną, f : X → R i a ∈ X. Mówimy, że f
ma w a minimum (maksimum) lokalne, gdy istnieje takie otoczenie U ∋ a, że dla każdego x ∈ U
zachodzi f (x) ≥ f (a) (f (x) ≤ f (a)). Ekstremum (minimum lub maksimum) jest silne, jeśli poza
x = a nierówność jest ostra.

Definicja 32. Dla przestrzeni Banacha E nad R, k ∈ N+ i formy jednorodnej φ ∈ Qk (E,R) mówimy,
że φ jest:

• nieujemna, gdy φ (h) ≥ 0 dla h ∈ E.

• niedodatnia, gdy φ (h) ≤ 0 dla h ∈ E.

• dodatnia, gdy φ (h) > 0 dla h ∈ E \ {0}.

• ujemna, gdy φ (h) < 0 dla h ∈ E \ {0}.

• dodatnio określona (koercywna), gdy istnieje takie c > 0, że φ (h) ≥ c ∥h∥k dla h ∈ E.

• ujemnie określona, gdy istnieje takie c > 0, że φ (h) ≤ −c ∥h∥k dla h ∈ E.

Uwaga. Mamy dodatnio określona =⇒ dodatnia =⇒ nieujemna oraz ujemnie określona =⇒
ujemna =⇒ niedodatnia.

Mamy φ (h) = Φ (h, . . . , h) dla pewnego Φ ∈ Homsym
k (E,R), a zatem jeśli k jest nieparzyste oraz φ

spełnia którykolwiek warunek, to z φ (−h) = (−1)k Φ (h, . . . , h) = −φ (h) wynika φ ≡ 0, a warunki
inne niż nieujemność i niedodatniość nie mają sensu.

Przy dimE < ∞ dodatnia określoność jest równoważna dodatniości, a ujemna określoność ujem-
ności. Wiemy bowiem, że domknięta kula jednostkowa jest zwarta i odwzorowania wieloliniowe są
ciągłe, a więc φ jest ciągłe i przyjmuje na sferze jednostkowej minimum λ. Zatem dodatniość φ
implikuje λ > 0 i dla h ∈ E \ {0} mamy λ ≤ φ

(
h

∥h∥

)
= 1

∥h∥kφ (h). Analogicznie dla ujemności.

Propozycja 25 (Warunek konieczny ekstremum). Niech E będzie przestrzenią Banacha nad R, a ∈
A ⊆ E oraz f : A→ R. Załóżmy, że f jest różniczkowalna w a i ma w a ekstremum lokalne. Wtedy
da f ≡ 0.

Dowód. a ∈ intA, więc ma sens gv (t) = f (a+ tv) dla |t| ≪ 1 i przy dowolnie ustalonym v ∈ E\{0}.
Jeśli f ma ekstremum lokalne w a, to gv ma ekstremum lokalne w 0, a że gv jest funkcją jednej
zmiennej, to g′v (0) = 0 i da f.v = 0.

Uwaga. Dalej będziemy stosować twierdzenie o wielomianie Taylora z resztą Peany z resztą zapisy-
waną jako η (h) ∥h∥n z funkcją η : A− a→ R ciągłą w 0 i taką, że η (0) = 0.

Wiemy już, że dla Φ ∈ Homsym
k (E,R) mamy Φ ≡ 0 ⇐⇒ Φ ◦∆n ≡ 0.

Propozycja 26. Jeśli f : A → R jest n-krotnie różniczkowalna w a (n ≥ 2), ma w a minimum
(maksimum) lokalne, a ponadto dka f ≡ 0 dla k = 1, . . . , n−1 i dna f ̸≡ 0, to dna f ◦∆n jest nieujemna
(niedodatnia), a ponadto n jest parzyste.

Dowód. Załóżmy nie wprost, że istnieje takie h ∈ E, że dna f. (h)
n
< 0. Wtedy h ̸= 0. Funkcja

g (t) = f (a+ th) ma minimum lokalne w 0. Ponadto dla t > 0

g (t) = f (a) +
1

n!
dna f. (th)

n
+ η (th) ∥th∥n = f (a) +

1

n!
tn dna f. (h)

n
+ η (th) tn ∥h∥n .
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Oznaczmy c = 1
n! d

n
a f. (h)

n
< 0. Istnieje δ > 0 takie, że dla każdego t < δ mamy ∥η (th) ∥h∥n∥ ≤

|c|
2 = −c

2 , więc g (t) ≤ f (a) + ctn − c
2 t

n < f (a) = g (0), sprzeczność. Zatem dna f ◦ ∆n musi być
nieujemna. Analogicznie pokazujemy drugą wersję wypowiedzi. Parzystość n wynika z nieujemności
i niezerowości.

Twierdzenie 48 (Warunek wystarczający ekstremum). Niech f : A → R będzie n-krotnie różniczko-
walna w a. Zakładamy, że dka f ≡ 0 dla k = 1, . . . , n− 1 oraz że dna f ◦∆n jest dodatnio (ujemnie)
określone (wtedy n jest parzyste). W takiej sytuacji f ma w a minimum (maksimum) lokalne.

Dowód. Ze wzoru Taylora f (a+ h) − f (a) = 1
n! d

n
a f. (h)

n
+ η (h) ∥h∥n. Z założenia dna f. (h)

n ≥
c ∥h∥n dla pewnego c > 0 i dowolnego h ∈ E. Zatem f (a+ h)−f (a) ≥

(
c
n! + η (h)

)
∥h∥n. Wyrażenie

w nawiasie jest dodatnie dla ∥h∥ ≪ 1, co kończy dowód.

Przykład. f (x, y) = x2 + y4 ma minimum (globalne) w (0, 0). Jest d(0,0) f = 2x + 4y3 = 0 oraz

d2(0,0) f. (h)
2
=
[
h1 h2

] [2 0

0 0

][
h1

h2

]
= 2h21, co nie jest dodatnio określone, bo zeruje się przy

niezerowym h2. Warunek wystarczający nie jest więc konieczny.

Przykład. Dla f (x, y) = x3 + y3 − 3xy jest ∇f (x, y) =
[
3x2 − 3y, 3y2 − 3x

]
, zatem warunek ko-

nieczny jest spełniony w (0, 0) i (1, 1). Mamy d2(x,y) f =

[
6x −3
−3 6y

]
, co daje formę kwadratową po-

staci d2(x,y) f. (h)
2
=

{
−6h1h2 (x, y) = (0, 0)

6h21 + 6h22 − 6h1h2 (x, y) = (1, 1)
. Zatem w (0, 0) dostajemy formę przyjmu-

jącą różne znaki i nie ma ekstremum, natomiast w (1, 1) jest d2(1,1) f. (h)
2
= 3 (h1 − h2)2 +3 ∥h∥2 ≥

3 ∥h∥2, czyli mamy dodatnią określoność i minimum.

Uwaga. W skończonym wymiarze E ≃ Rn i dodatnia określoność jest po prostu dodatniością. Dla
funkcji dwukrotnie różniczkowalnej mamy macierz Hesse’ego H = d2a f =

[
∂2f

∂xixj
(a)
]n
i,j=1

. Zachodzi

d2a f (h, k) =
[
k1 . . . kn

]
H


h1
...
hn

 = ⟨k,Hh⟩ = ⟨h,Hk⟩ ,

czyli mamy symetryczną formę dwuliniową B (h, k) = d2a f (h, k).

Twierdzenie 49. Niech V będzie przestrzenią wektorową nad R i niech dimV = n ≥ 1. Dla dwuli-
niowej formy symetrycznej B : V × V → R istnieje baza ortonormalna {ei}ni=1.

Dowód. Oznaczmy S1 = SV (sfera jednostkowa), V1 = V . Wiemy, że B jest ciągłe a S1 zwarte.
Zatem B ◦∆V osiąga maksimum na S1 w punkcie e1 ∈ S1.

Niech V2 = (Re1)⊥ (domknięta podprzestrzeń). S2 = S1 ∩ V2 jest zwarte. Zatem B ◦ ∆V osiąga
maksimum na S2 w punkcie e2 ∈ S2. Ogólnie kładziemy Vk+1 = {x ∈ Vk : ⟨x, ek⟩ = 0} i Sk+1 =
Sk∩Vk+1, mamy B (ek+1, ek+1) ≥ B (x, x) dla x ∈ Sk+1. W każdym kroku spada wymiar rozważanej
przestrzeni, więc procedura kończy się po n krokach. Wektory {e1, . . . , en} są ortogonalne, więc
liniowo niezależne i tworzą bazę V .

Dla ustalonych i < j i t ∈ R niech uij (t) =
ei+tej

∥ei+tej∥ ∈ Si. Mamy

B (ei, ei) + t2B (ej , ej) + 2tB (ei, ej) = B (ei + tej , ei + tej) ≤ B (ei, ei) ∥ei + tej∥2 =

B (ei, ei)
(
∥ei∥2 + 2t ⟨ei, ej⟩+ t2 ∥ej∥2

)
= B (ei, ei)

(
1 + t2

)
,
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gdzie nierówność wynika z definicji ei. Dostajemy więc

t2 (B (ei, ei)−B (ej , ej))− 2tB (ei, ej) ≥ 0.

Jest to wielomian kwadratowy (ze zmienną t), którego pierwiastkiem jest 0. Jego nieujemność im-
plikuje, że drugim pierwiastkiem też jest 0, a więc jego wyróżnik jest zerowy, czyli 4B (ei, ej)

2
= 0.

Zatem wskazane wektory tworzą bazę ortonormalną.

Uwaga. Stosując powyższe twierdzenie do V = Rn i B (h, k) = ⟨h,Hk⟩ wybieramy bazę ortonor-
malną {vi}ni=1 taką, że ⟨vj , Hvi⟩ = 0 dla i ̸= j. Mamy Hvi =

∑n
j=1 λjvj , więc dla j0 ̸= i mamy

0 =

〈
vj0 ,

n∑
j=1

λjvj

〉
=

n∑
j=1

λj ⟨vj0 , vj⟩ = λj0 ∥vj0∥
2
= λj0 .

To znaczy, że Hvi = λivi i H = diag (λ1, . . . , λn) w tej bazie. Stąd

B (x, x) =

〈
n∑

j=1

xjvj , H

n∑
i=1

xivi

〉
=

n∑
j,i=1

⟨xjvj , xiλivi⟩ =
n∑

i=1

λix
2
i

jest postacią kanoniczną formy kwadratowej B (x, x). Z tego wynika, że dodatnia lub ujemna okre-
śloność B zależy od wartości własnych λi – wszystkie muszą mieć ten sam znak.

Uwaga. Niech K ⊆ Rm będzie zwarty. Funkcja ciągła f : K → R osiąga kresy na K. Niech Σf =
{x ∈ intK : dx f = 0} będzie zbiorem punktów krytycznych. Zachodzi {min f (K) ,max f (K)} ⊆
f (Σf ) ∪ f (∂K), bo jeśli ekstremum leży we wnętrzu, to jest ekstremum lokalnym.

W przypadku dimE = ∞ zbiór zwarty K ma puste wnętrze (bo kula domknięta nie jest zwarta),
więc nie da się tam zastosować technik opartych na różniczkowaniu.

20. Rozmaitości 2025-12-11

Definicja 33. Niech X będzie przestrzenią topologiczną Hausdorffa spełniającą drugi aksjomat prze-
liczalności. X nazywamy rozmaitością topologiczną wymiaru n ∈ N, gdy lokalnie przypomina Rn,
co znaczy, że każdy punkt a ∈ X posiada otoczenie otwarte a ∈ U , które jest homeomorficzne z Rn.

Uwaga. Przyjmuje się często, że ∅ jest rozmaitością topologiczną wymiaru −1.

Dowolna przeliczalna dyskretna przestrzeń topologiczna jest rozmaitością topologiczną wymiaru 0.

Rozmaitość posiada lokalnie własności topologiczne Rn. W definicji można zastąpić Rn przez kulę
otwartą w Rn.

Uwaga. Gdyby z definicji wyrzucić T2, to i tak mamy tę własność lokalnie. Nie musi to być jednak
własność globalna: na X = R \ {0} ∪ {p1, p2} (gdzie p1, p2 to punkty poza prostą) definiujemy
topologię, której baza składa się z tej indukowanej z R oraz zbiorów postaci {pi}∪ ((−ε1, ε2) \ {0}).
Nie da się oddzielić p1 od p2, ale lokalnie jest to przestrzeń T2.

Definicja 34. Na przestrzeni topologicznej Hausdorffa X z 2AP n-wymiarowym atlasem nazywamy
rodzinę {(Ui, φi)}i∈I , gdzie Ui ∈ topX\{∅}, a φi : Ui → Rn są homeomorfizmami oraz

⋃
i∈I Ui = X.

Homeomorfizmy φi nazywamy mapami (ang. charts).

Definicja 35. Jeśli Ui ∩ Uj ̸= ∅, to możemy rozważyć φi (Ui ∩ Uj) ∈ topRn. Odwzorowanie

φij = φj ◦ (φi)
−1 |φi(Ui∩Uj)

jest homeomorfizmem zwanym odwzorowaniem przejścia lub przejściówką (chart transformation).
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Definicja 36. Rozważmy przestrzeń topologiczną M spełniającą T2 i 2AP. Ustalmy ciało K ∈ {R,C}
i m ∈ N, k ∈ N∪ {∞, ω}. Rodzinę A = {(Ui, φi)}i∈I nazywamy m-wymiarowym atlasem różniczko-
wym klasy Ck na M , gdy

1. dla każdego i ∈ I mamy Ui ∈ topM \ {∅}.

2. dla każdego i ∈ I istnieje Vi ∈ topKm takie, że φi : Ui → Vi jest homeomorfizmem.

3.
⋃

i∈I Ui =M .

4. dla wszystkich i, j ∈ I takich, że Ui ∩ Uj ̸= ∅ przejściówka φij jest klasy Ck.

Uwaga. Mamy φii = idVi
oraz φjℓ ◦ φij = φiℓ. Z tego wynika φ−1

ij = φji. Zatem φij są Ck-
dyfeomorfizmami.

Odwzorowania
{
φ−1
i

}
nazywa się lokalną parametryzacją lub lokalnym układem współrzędnych.

Przy ustalonym M,m, k wymiar m jest wyznaczony jednoznacznie (wynika z twierdzenia Brouwera
– jeśli topologie się zgadzają, to wymiar algebraiczny też).

Uwaga. Atlasy różniczkowe na M ustalonej klasy są uporządkowane liniowo przez inkluzję. Łatwo
się przekonać, że można stosować lemat Kuratowskiego-Zorna, więc istnieją atlasy maksymalne
ustalonej klasy.

Definicja 37. Atlasy maksymalne dla M,k nazywamy m-wymiarowymi strukturami różniczkowymi
(rzeczywistymi lub zespolonymi, odpowiednio) klasy Ck. Oznaczamy ich zbiór przez Dk.

Definicja 38. Każdy atlas różniczkowyA klasy Ck naM zawiera się w pewnym atlasie maksymalnym
(otrzymanym przez dorzucanie do A map, które dają przejściówki klasy Ck), który oznaczamy
Dk (A) i nazywamy strukturą generowaną przez atlas A.

Uwaga. Każdy atlas klasy Ck jest poszerzalny do struktury klasy Ck−1, czyli na przykład Dω ⊆
D∞ ⊆ Dk, gdzie przypadek k = 0 to rozmaitości topologiczne.

Definicja 39. Przestrzeń topologiczną M spełniającą T2 i 2AP nazywamy rozmaitością rzeczywi-
stą (zespoloną) wymiaru m klasy Ck, gdy zadana jest na niej struktura różniczkowa rzeczywista
(zespolona).

Uwaga. Przyjmuje się, że M = ∅ jest rozmaitością analityczną (rzeczywistą i zespoloną) wymiaru
−1.

Rozmaitość klasy Ck jest też klasy Cℓ dla ℓ ≤ k. Każda rozmaitość różniczkowa zespolona wymiaru
m jest analityczną rozmaitością rzeczywistą wymiaru 2m.

Zadanie struktury klasy Ck na M sprowadza się do ustalenia atlasu klasy Ck, który można rozszerzyć
do struktury.

Propozycja 27. Niech A,B będą atlasami m-wymiarowymi klasy Ck na M , a D ⊇ A będzie struk-
turą klasy Ck wymiaru m na M . Niech A = {(Ui, φi)}i∈I . Wtedy

D =

(U,φ) :

U ∈ topM \ {∅} ,
φ : U → V ∈ topKm homeomorfizm,
∀i∈I φ ◦ φ−1

i , φi ◦ φ−1 klasy Ck,
∀i∈I:Ui∩U ̸=∅ φ ◦ (φi|Ui∩U )

−1
, φi ◦ (φ|Ui∩U )

−1 klasy Ck

 .

Do tego Dk (A) = Dk (B) ⇐⇒ A∪ B jest atlasem klasy Ck.
Dowód. Drugie wynika z pierwszego, a pierwsze jest oczywiste.
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Wniosek. Dany atlas generuje dokładnie jedną strukturę.

Przykład. M = Ω ∈ topKm \ {∅} z atlasem A = {(Ω, idΩ)} jest rozmaitością analityczną wymiaru
m. Wtedy

Dk (A) =

(U,φ) :

∅ ≠ U ⊆ Ω otwarte,
φ : U → V ∈ topKm homeomorfizm,
φ, φ−1 klasy Ck

 .

Zatem Dk (A) = Dk ({(Ω, h)}), gdzie h : Ω→ Ω jest dowolnym Ck-dyfeomorfizmem.

Przykład. Niech M =
{
(x, y) ∈ R2 : x2 + y2 = 1

}
z topologią indukowaną z R2. Rozważmy funkcję

ψ (t) = (cos t, sin t) ∈ M dla t ∈ R. Dla V1 = (0, 2π) i V2 = (π, 3π) ustalamy φ1 = (ψ|V1
)
−1 i

φ2 = (ψ|V2
)
−1. Są to mapy na M odpowiednio na zbiorach U1 =M \ {(1, 0)} i U2 =M \ {(−1, 0)}.

Przejściówka φ12 jest Cω-dyfeomorfizmem.

Dla M nie istnieje jedna globalna mapa, bo M jest zwarty, a więc nie jest homeomorficzny z R.

Przykład. Rozważmy sferę Riemanna: Ĉ = C ∪ {∞} (uzwarcenie jednopunktowe Aleksandrowa).

Możemy zadać na niej mapy φ1 : C ∋ z → z ∈ C oraz φ2 : C∗ ∪ {∞} ∋ z →

{
1
z , z ∈ C∗

0, z =∞
. Mamy

φ12 (z) = 1
z , otrzymujemy strukturę analityczną i Ĉ jest zespoloną, zwartą i spójną rozmaitością

jednowymiarową.

Takie rozmaitości (zespolone, spójne, jednowymiarowe, klasy C1) nazywamy powierzchniami Rie-
manna. Istnieje twierdzenie Radó z 1925 roku, które mówi, że w tym przypadku można pominąć
2AP w definicji rozmaitości.

Przykład (Rozmaitości Grassmanna). Niech V będzie przestrzenią wektorową nad K, dimV = m ≥
1. Dla 1 ≤ p ≤ m definiujemy Gp (V ) = {L : L ≤ V,dimL = p}. Ten obiekt nazywamy p-tym
grassmannianem. Gp (V ) posiada strukturę zwartej rozmaitości analitycznej wymiaru p (m− p).

Dla p = 1 dostajemy przestrzeń rzutową przestrzeni V , którą można otrzymać jako ilorazową
przestrzeń topologiczną zadaną relacją v ∼ w ⇐⇒ ∃λ∈K λv = w. Odpowiedni atlas otrzymujemy
definiując

Ui = {[(x1, . . . , xm)]∼ : xi ̸= 0} φi−→
(
x1
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xm
xi

)
∈ Km−1.

21. Podrozmaitości 2025-12-12

Definicja 40. Rozważmy rozmaitość M wymiaru m klasy Ck nad K. Ustalmy 0 ≤ n ≤ m. Zbiór
∅ ̸= N ⊆ M nazywamy podrozmaitością M wymiaru n, jeśli dla każdego a ∈ N istnieje otoczenie
otwarte a ∈ U oraz mapa φ : U → Km taka, że

U ∩N = φ−1 ({x = (x1, . . . , xm) ∈ Km : xn+1 = . . . = xm = 0}) .

Przyjmujemy, że ∅ jest podrozmaitością wymiaru −1. Ponadto gdy n = m − 1 mówimy, że N jest
hiperpowierzchnią, a ogólnie liczbę m− n nazywamy kowymiarem N .

Uwaga. Podrozmaitość n-wymiarowa N jest rozmaitością abstrakcyjną wymiaru n i tej samej klasy,
co M . Świadczy o tym atlas AN = {(U ∩N, φ̃) : (U,φ) ∈ A′}, gdzie A′ składa się z tych elementów
atlasu M , które spełniają warunek z definicji podrozmaitości, a dla φ = (φ1, . . . , φm) bierzemy
φ̃ = (φ1, . . . , φn).

Punkty są podrozmaitościami zerowymiarowymi.

Jeśli N ∈ topM \ {∅}, to N jest podrozmaitością wymiaru m = dimM .

21. Podrozmaitości Strona 38/49



Analiza Matematyczna 3 Maciej Mikołajczak

Jeśli V jest przestrzenią wektorową nad K, to dowolny izomorfizm z Km wyznacza na V strukturę
rozmaitości m-wymiarowej analitycznej. Wtedy podprzestrzenie afiniczne są podrozmaitościami wy-
miaru takiego, jak algebraiczny.

Definicja 41. Niech ∅ ≠ Ω ∈ topKn, f : Ω→ Km będzie klasy C1. Rzędem f w a nazywamy wartość
rg f (a) = dim Imda f . Jest to rząd macierzy da f .

Definicja 42. Niech D = {x ∈ K : |x| < 1}. Definiujemy Dr = rD = {x ∈ K : |x| < r} dla r > 0.
Będziemy używać polidysków Dn

r ⊆ Kn.

Twierdzenie 50 (O stałym rzędzie). Niech ∅ ̸= Ω ∈ topKn, f : Ω → Km będzie klasy Ck, gdzie
k ∈ N+ ∪ {∞, ω}. Niech istnieje d ∈ N takie, że dla każdego x ∈ Ω zachodzi rg f (a) = d. W takiej
sytuacji dla każdego a ∈ Ω istnieją otoczenia a ∈ U ⊆ Ω oraz b = f (a) ∈ W ⊆ Km takie, że
f (U) ⊆ W oraz istnieją Ck-dyfeomorfizmy u : Dn → U , w : W → Dm posyłające odpowiednio
0→ a i b→ 0, dla których (w ◦ f ◦ u) (x1, . . . , xn) = (x1, . . . , xd, 0, . . . , 0) dla (x1, . . . , xn) ∈ Dn.

Dowód. Bez straty ogólności m,n, d ∈ N+, bo inaczej sytuacja staje się trywialna. Można założyć
a = 0 ∈ Kn, b = 0 ∈ Km, bo wystarczy złożyć f z translacjami f̃ = τ−b ◦ f ◦ τa|Ω−a, co nadal jest
klasy Ck i dx f̃ = idKm ◦ dx+a f ◦ idKn , więc rząd się nie zmienia, a translacje są dyfeomorfizmami
analitycznymi.

Jeśli L ∈ L (Kn,Km) ma rząd d, to dimkerL = n − d, więc można uzupełnić do sumy prostej
Kn = V ⊕ kerL, gdzie V ≃ Kd ≃ ImL. Wybieramy bazę v1, . . . , vd dla V i vd+1, . . . , vn dla kerL.
Zauważmy, że L (v1) , . . . , L (vd) są bazą dla ImL. Uzupełniamy ją wektorami wd+1, . . . , wm do bazy
Km. Definiujemy izomorfizmy φ : Kn → Kn poprzez ei → vi oraz ψ : Km → Km poprzez L (vj)→ ej
dla j = 1, . . . , d oraz wj → ej dla j = d+ 1, . . . ,m.

Teraz (ψ ◦ L ◦ φ) (
∑n

i=1 xiei) = (ψ ◦ L) (
∑n

i=1 xivi) = ψ
(∑d

i=1 xiL (vi)
)

= (x1, . . . , xd, 0, . . . , 0).
Zatem bez straty ogólności możemy przyjąć, że da f (x) = (x1, . . . , xd, 0, . . . , 0), bo wystarczy za-
stąpić f przez ψ ◦ f ◦ φ.

Zapiszmy f = (f1, . . . , fm) i weźmy v : Ω ∋ x = (x1, . . . , xn) → (f1 (x) , . . . , fd (x) , xd+1, . . . , xn).
To odwzorowanie jest klasy Ck i d0 v = (d0 f1, . . . ,d0 fd, pd+1, . . . , pn), gdzie pj to rzutowanie na
j-tą współrzędną. Mamy też d0 fi = pi, więc d0 v = idKn i z twierdzenia o lokalnym dyfeomorfizmie
istnieje otoczenie 0 ∈ U ⊆ Ω oraz r > 0 takie, że v|U : U → rDn jest Ck-dyfeomorfizmem. Niech ũ
będzie jego odwrotnością.

Mamy ũ (x̃1, . . . , x̃n) = (x1, . . . , xn) ⇐⇒ (x̃1, . . . , x̃n) = (f1 (x) , . . . , fd (x) , xd+1, . . . , xn), więc
(f ◦ ũ) (x̃1, . . . , x̃n) = (x̃1, . . . , x̃d, (fd+1 ◦ ũ) (x̃) , . . . , (fm ◦ ũ) (x̃)).

Oznaczmy g = f ◦ ũ : rDn ∋ x → (x1, . . . , xd, gd+1 (x) , . . . , gm (x)) ∈ Km. Jest to odwzorowanie
klasy Ck i g (0) = 0.

Mamy dx g =

[
Id 0

α ∂(gd+1,...,gm)
∂(xd+1,...,xn)

(x)

]
dla pewnego α oraz dx g = dũ(x) f ◦ dx ũ. To odwzorowa-

nie ma rząd d, ale już Id ma taki rząd, a więc prawa dolna podmacierz musi być zerowa. Wo-
bec ∂(gd+1,...,gm)

∂(xd+1,...,xn)
(x) ≡ 0 mamy, że (gd+1, . . . , gm) nie zależy od zmiennych xd+1, . . . , xn, a zatem

(gd+1, . . . , gm) (x1, . . . , xn) = (gd+1, . . . , gm) (x1, . . . , xd, 0, . . . , 0).

Otrzymaliśmy g (x1, . . . , xm) = (x1, . . . , xd, gd+1 (x1, . . . , xd, 0, . . . , 0) , . . . , gm (x1, . . . , xd, 0, . . . , 0))
dla (x1, . . . , xn) ∈ rDn.

Rozważmy w̃ : rDd ×Km−d → rDd ×Km−d zadane wzorem

w̃ (y) = (y1, . . . , yd, yd+1 − gd+1 (y1, . . . , yd, 0, . . . , 0) , . . . , ym − gm (y1, . . . , yd, 0, . . . , 0)) .

Jest ono klasy Ck i odwracalne (ten sam wzór, tylko z plusami), więc w̃ jest Ck-dyfeomorfizmem.
Oczywiście w̃ (0) = 0. Niech W = w̃−1

(
rDd × rDm−d

)
. Wówczas (w̃|W ) ◦ f ◦ ũ : rDd × rDn−d ∋

x→ (x1, . . . , xd, 0, . . . , 0).

Pozostaje przeskalować: u : Dn ∋ x→ ũ (rx) ∈ U , w :W ∋ y → 1
r w̃ (y) ∈ Dm.
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Uwaga. Z definicji rzędu d ≤ min {n,m}. Twierdzenie mówi zatem, że z dokładnością do dyfeomor-
fizmu zamiany zmiennych w dziedzinie i przeciwdziedzinie odwzorowanie o stałym rzędzie zachowuje
się lokalnie jak rzutowanie (gdy m ≤ n) lub zanurzenie (gdy n ≤ m).

Uwaga. Badanie odwzorowania o stałym rzędzie staje się dużo przyjemniejsze, na przykład dla
b′ ∈ f (U) mamy w (b′) = (x′, 0) dla x′ ∈ Kd i 0 ∈ Km−d, więc

f−1 (b′) = f−1
(
w−1 (w (b′))

)
= u

(
u−1

(
f−1

(
w−1 (x′, 0)

)))
= u

(
(w ◦ f ◦ u)−1

(x′, 0)
)

= {(x′, xd+1, . . . , xm) : xd+1, . . . , xm ∈ D} .

22. Immersje i submersje
2025-12-15

Definicja 43. Niech E,F będą przestrzeniami Banacha nad K, Ω ∈ topE. Funkcję f : Ω → F
nazywamy immersją (submersją), jeśli jest klasy C1 oraz w każdym x ∈ Ω różniczka dx f jest
monomorfizmem (epimorfizmem).

Mówimy też, że f jest immersją (submersją) w punkcie a ∈ Ω, jeśli odpowiednia własność jest
spełniona w punkcie a (i niekoniecznie w innych).

Uwaga. Jeśli f jest immersją w a, to dimE ≤ dimF . Jeśli jest f submersją w a, to dimE ≥ dimF .

Uwaga. W przypadku E ≃ Kn, F ≃ Km do immersji i submersji możemy stosować twierdzenie o
rzędzie. Odwzorowanie będące w a jednocześnie immersją i submersją jest lokalnym dyfeomorfizmem
w otoczeniu a.

Definicja 44. Niech (X, τ) będzie przestrzenią topologiczną, f : X → R. Mówimy, że f jest półciągła
z góry (co zapisujemy f ∈ C↑), jeśli dla każdego t ∈ R mamy {x ∈ X : f (x) < t} ∈ topX. Podobnie
f jest półciągła z dołu (f ∈ C↓), jeśli dla każdego t ∈ R mamy {x ∈ X : f (x) > t} ∈ topX.

Uwaga. Funkcja charakterystyczna zbioru χA jest półciągła z góry wtedy i tylko wtedy, gdy A = A,
a półciągła z dołu, gdy A = intA.

f ∈ C↑ ⇐⇒ −f ∈ C↓.

f jest półciągła z góry, jeśli dla każdego t ∈ R zbiór {x ∈ X : f (x) ≥ t} jest domknięty. Podobnie dla
półciągłości z dołu. Do tego jeśli f jest półciągła z góry (dołu), to w pewnym otoczeniu rozważanego
punktu wartości f mogą jedynie spadać (wzrastać).

Propozycja 28. f ∈ C↑ ⇐⇒ lim supx→a f (x) = f (a) dla każdego a ∈ X.

Dowód. ( =⇒ ) Przypomnijmy, że lim supx→a f (x) = infU∋a supx∈U f (x). Z tego od razu wy-
nika lim supx→a f (x) ≥ f (a). Załóżmy nie wprost, że lim supx→a f (x) ≥ f (a) + 2ε dla pewnego
ε > 0. Zbiór U = {x ∈ X : f (x) < f (a) + ε} jest otwarty i zawiera a. Zatem supx∈U f (x) ≥
lim supx→a f (x) ≥ f (a) + 2ε, co przeczy definicji U .

(⇐= ) Nie wprost istnieje takie t0, że A = {x ∈ X : f (x) < t0} /∈ τ . Wtedy istnieje a ∈ A takie, że
dla każdego otoczenia U ∋ a istnieje xU ∈ U \A, a więc supx∈U f (x) ≥ f (xU ) ≥ t0. Z tego wynika
lim supx→a f (x) ≥ t0 > f (a), sprzeczność.

Propozycja 29. f ∈ C↓ wtedy i tylko wtedy, gdy epigraf {(x, t) ∈ X × R : t ≥ f (x)} jest domknięty.

Dowód. ( =⇒ ) Jeśli (a, t) ∈ X ×R nie jest w epigrafie, to f (a) > t i {x ∈ X : f (x) > t}× (−∞, t)
jest otwartym otoczeniem (a, t) rozłącznym z epigrafem. Wobec dowolności (a, t) dopełnienie epi-
grafu jest otwarte.

(⇐= ) Ustalmy t ∈ R. Niech a ∈ {x ∈ X : f (x) > t}. Wtedy (a, t) nie jest w epigrafie, więc istnieje
zbiór otwarty U × V zawierający (a, t) i zawarty w dopełnieniu epigrafu. W szczególności U ⊆
{x ∈ X : f (x) > t}, co wobec dowolności a daje otwartość.
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Propozycja 30. Jeśli f ∈ C↑ (X,R) a K ⊆ X jest zwarty, to f |K osiąga maksimum (minimum dla
półciągłości z dołu).

Propozycja 31. Niech Ω ∈ topKn, f : Ω → Km będzie klasy C1, a ∈ Ω oraz rg f (a) = k. W takiej
sytuacji istnieje otoczenie a ∈ U ⊆ Ω takie, że dla każdego x ∈ U mamy rg f (x) ≥ k, a więc
Ω ∋ x→ rg f (x) ∈ R jest półciągłe z dołu.

Dowód. Rozważmy następujący ciąg przekształceń:

• x ∈ Ω przekształcamy w macierz A = dx f ,

• macierzy A przypisujemy ciąg wszystkich jej minorów k × k: (A1, . . . , Ap),

• ciągowi minorów (A1, . . . , Ap) przypisujemy ciąg ich wyznaczników (t1, . . . , tp),

• liczymy sumę
∑p

i=1 |tj | ∈ R.

Całe to przekształcenie nazywamy σ. Jest ono ciągłe (wybór minorów to zestawienie rzutowań, a
pozostałe są oczywiste). σ (x) ̸= 0 jest równoważne istnieniu niezerowego minoru rzędu k macierzy
dx f , a więc rg f (x) ≥ k. Mamy więc σ (a) ̸= 0 i z ciągłości σ to samo zachodzi w pewnym otoczeniu
a, więc mamy tezę.

Wniosek. Jeśli różniczka odwzorowania f jest monomorfizmem (epimorfizmem), to jest nim w oto-
czeniu punktu a, to znaczy jeśli f jest immersją (submersją) w punkcie, to jest nią w całym otoczeniu.

Twierdzenie 51 (O submersji). Niech X ≃ Kn, Y ≃ Km, Z ≃ Kn−m będą przestrzeniami unormo-
wanymi (zakładamy, że n ≥ m), a ∈ X. Niech f : (X, a) → Y będzie kiełkiem klasy Ck, gdzie
k ∈ N+∪{∞, ω} oraz niech π : Y ×Z → Y będzie rzutowaniem. W takiej sytuacji da f jest epimor-
fizmem wtedy i tylko wtedy, gdy istnieje kiełek Ck-dyfeomorfizmu φ : (X, a) → (Y × Z, (f (a) , 0))
taki, że f = π ◦ φ.

Dowód. ( =⇒ ) dim Imda f = m, czyli dimker da f = n − m i istnieje izomorfizm h : ker da f →
Z. Zapiszmy X = ker da f ⊕ Λ i niech ρ będzie rzutowaniem na pierwszą składową. Rozważmy
odwzorowanie φ = (f, h ◦ ρ). Oczywiście f = π ◦ φ.

Mamy da φ = (da f, h ◦ ρ), więc ker da φ = ker da f∩ker (h ◦ ρ) = {0}, bo ker ρ = Λ, a h jest izomor-
fizmem. Zatem da φ jest monomorfizmem, czyli izomorfizmem ze zgodności wymiarów. Twierdzenie
o lokalnym dyfeomorfizmie kończy.

(⇐= ) da f = π ◦ da φ, co jest złożeniem epimorfizmów.

Uwaga. Jeśli f jest submersją, to jest odwzorowaniem otwartym, bo φ i π są otwarte.

Odzyskujemy twierdzenie o rzędzie: f ◦ φ−1 = π.

Twierdzenie 52 (O immersji). Niech X ≃ Kn, Y ≃ Km,W ≃ Km−n będą przestrzeniami unor-
mowanymi (zakładamy, że m ≥ n), a ∈ X. Niech f : (X, a) → Y będzie kiełkiem klasy Ck, gdzie
k ∈ N+∪{∞, ω} oraz niech ι : X → X×W będzie zanurzeniem. W takiej sytuacji da f jest monomor-
fizmem wtedy i tylko wtedy, gdy istnieje kiełek Ck-dyfeomorfizmu φ : (X ×W, (a, 0)) → (Y, f (a))
taki, że f = φ ◦ ι.
Dowód. ( =⇒ ) dim Imda f = n, więc możemy zapisać Y = Imda f ⊕ Λ dla Λ ≃ Km−n. Istnieje
izomorfizm h :W → Λ. Rozważmy odwzorowanie φ (x,w) = f (x) + h (w). Ewidentnie φ ◦ ι = f .

d(a,0) φ = da f ◦pX +h◦pW . Z własności sumy prostej x,w ∈ ker d(a,0) φ ⇐⇒ da f = 0∧h (w) = 0,
a z monomorficzności da f i h to zachodzi tylko, gdy x,w = 0. Zatem d(a,0) φ jest monomorfizmem,
czyli izomorfizmem ze zgodności wymiarów. Twierdzenie o lokalnym dyfeomorfizmie kończy.

(⇐= ) da f = d(a,0) φ ◦ ι, co jest złożeniem monomorfizmów.

Uwaga. Jeśli f jest immersją, to jest odwzorowaniem otwartym na obraz (jeśli U jest otwarte, to
f (U) jest otwarte w obrazie f). Jeśli (X, τ) jest przestrzenią topologiczną a h : U → X jest (nawet)
homeomorfizmem na obraz, to niekoniecznie h (U) ∈ topX. Zatem obraz immersji nie musi być
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szczególnie ładny.

23. Podrozmaitości przestrzeni euklidesowej
2025-12-18

Notacja. Niech 0 ≤ n ≤ m. Oznaczamy Λ (n,m) = {λ : {1, . . . , n} → {1, . . . ,m} | λ silnie rosnąca}.
Dla λ ∈ Λ (n,m) mamy jednoznacznie wyznaczone dopełnienie, to znaczy λ′ ∈ Λ (m− n,m) takie,
że Imλ ⊔ Imλ′ = {1, . . . ,m}.

Przyjmijmy Kn
λ =

{(
xλ(1), . . . , xλ(n)

)
: x = (x1, . . . , xm) ∈ Km

}
, to znaczy Kn

λ =
∑n

i=1 Keλ(i).

Twierdzenie 53. Niech a ∈ N ⊆ Km, 0 ≤ n ≤ m, k ∈ N+ ∪ {∞, ω}. Następujące warunki są
równoważne.

1. Istnieje otoczenie V ∋ a i zbiór otwarty W ⊆ Km oraz Ck-dyfeomorfizm F : V →W , dla któ-
rego N ∩ V = F−1

(
Kn × {0}m−n

)
= F−1 ({x ∈W : xn+1 = . . . = xm = 0}). Inaczej mówiąc

F (N ∩ V ) =
(
Kn × {0}m−n

)
∩W . Dodatkowo F (a) = 0. Takie F nazywamy dyfeomorfi-

zmem prostującym.

2. Istnieje otoczenie V ∋ a i submersja klasy Ck h : V → Km−n taka, że h (a) = 0 oraz
N ∩ V = h−1 (0). Takie h nazywamy submersją opisującą.

3. Istnieje otoczenie V ∋ a oraz λ ∈ Λ (n,m) i otwarte U ⊆ Kn
λ ⊆ Km oraz f : U → (Kn

λ)
⊥ klasy

Ck takie, że N ∩ V = Γf = {x+ f (x) : x ∈ U} (wykres).

4. Istnieje otoczenie V ∋ a, 0 ∈ G ⊆ Kn otwarte oraz immersja klasy Ck g : G → Km taka,
że g (G) = V ∩ N , g (0) = a oraz g : G → V ∩ N jest homeomorfizmem. Takie g nazywamy
lokalną parametryzacją lub lokalnym układem współrzędnych.

Gdy zachodzi którykolwiek z tych warunków, to stożek styczny

Ca (N) =
{
v ∈ Km : ∃(xν)⊆N :xν→a∃(tν)⊆R:tν>0 tν (xν − a)→ v

}
jest n-wymiarową podprzestrzenią wektorową oraz zachodzi

Ca (N) = da F
−1
(
Kn × {0}m−n

)
= ker da h = Γdaλ

f = Imd0 g.

Dowód. Przypadek n = 0 jest trywialny, n = m podobnie. Załóżmy więc 0 < n < m.

(1 =⇒ 2) Niech F = (F1, . . . , Fn, Fn+1, . . . , Fm). Oznaczamy h = (Fn+1, . . . , Fm). V mamy razem

z F z założenia, oczywiście V ∩N = h−1 (0) i h jest klasy Ck. Mamy da F =

[
∂(F1,...,Fn)

∂x (a)

da h

]
, więc

rząd da h to m− n i mamy submersję.

(2 =⇒ 3) Bierzemy h : V → Km−n z założenia. Mamy rg da h = m − n, więc istnieje niezerowy
minor (m− n) × (m− n), czyli wybór indeksów µ ∈ Λ (m− n,m) taki, że det ∂h

∂xµ
(a) ̸= 0. Z

twierdzenia o funkcji uwikłanej zbiór N ∩ V = h−1 (0) jest (lokalnie, w otoczeniu a) wykresem
funkcji klasy Ck postaci xµ = f (xµ′), gdzie µ′ ∈ Λ (n,m) jest uzupełnieniem µ.

(3 =⇒ 4) Niech G = U , g : G ∋ z → (z, f (z)) ∈ Γf = N ∩ V . Jest to homeomorfizm klasy Ck.
daλ

g = (idKn ,daλ
f), a więc jest to immersja.

(4 =⇒ 1) Z twierdzenia o immersji dla g istnieje otoczenie 0 = g−1 (a) ∈W ⊆ G oraz U ∋ a takie,
że g (W ) ⊆ U oraz istnieje Ck-dyfeomorfizm w : U → w (U) ∈ topKm taki, że (w ◦ g) (z) = (z, 0) ∈
Kn ×Km−n. Skoro g były homeomorfizmem na obraz, to w−1

(
Kn × {0}m−n

)
= U ∩N .

To kończy dowód pierwszej części. Z AM2 wiemy już, że mając (3) dostajemy C(aλ,f(aλ)) (ΓF ) =
Γdaλ

f , a to jest równe Ca (N) = Ca (N ∩ V ). To już daje nam, że stożek styczny jest n-wymiarową
podprzestrzenią liniową. Bez straty ogólności we wszystkich warunkach możemy wybrać jedno
wspólne otoczenie V ∋ a. Mamy N ∩ V = Γf = F−1

(
Kn × {0}m−n

)
= h−1 (0) = g (G).
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Mamy h (xλ ⊕ f (xλ)) ≡ 0 =⇒ ker da h ⊇ Γdaλ
f i równość z równości wymiarów.

Oznaczmy Φ = (F1, . . . , Fn) i Ψ = (Fn+1, . . . , Fm). Mamy da F = (da Φ,da Ψ). F (xλ ⊕ f (xλ)) =
(Φ (xλ ⊕ f (xλ)) , 0), czyli Ψ(xλ ⊕ f (xλ)) ≡ 0 i jak wyżej ker da Ψ ⊇ Γdaλ

f .

Wreszcie h ◦ g ≡ 0, więc da h ◦ d0 g = 0 i Imd0 g ⊆ ker da h i znowu równość.

Uwaga. Zauważmy, że w całym powyższym dowodzie sprawdzamy rząd różniczek w jednym punkcie
a i to wystarcza na mocy półciągłości rzędu z dołu.

Definicja 45. W sytuacji z twierdzenia N jest w a n-wymiarową podrozmaitością Km klasy Ck, a
stożek styczny, oznaczany teraz TaN , jest elementem Gn (Km) i jest jej przestrzenią styczną w a.

Uwaga. Własność bycia podrozmaitością jest własnością otwartą, to znaczy jeśli N jest taka w a,
to jest również w b ∈ U ∩N dla pewnego otoczenia b ∈ U ⊆ Km.

Jeśli N jest podrozmaitością Km, to jest rozmaitością zadaną przez atlas (Km,Dk ({(Km, idKn)})).

N zawsze rozważamy z topologią indukowaną. Z twierdzenia Brouwera wymiar N jest jednoznaczny.
Dla ustalonej podrozmaitości N istnieje największa klasa, jakiej jest ta podrozmaitość.

O ile wykres funkcji klasy Ck jest podrozmaitością klasy Ck, o tyle implikacja w drugą stronę nie
działa. Funkcja 3

√
x nie jest różniczkowalna w zerze, a jej wykres jest podrozmaitością analityczną.

Podrozmaitość topologiczną można zdefiniować poprzez pierwszy warunek z twierdzenia z home-
omorfizmem w miejsce dyfeomorfizmu.

Podrozmaitość jest lokalnie domknięta, to znaczy dla a ∈ N i otoczenia U ∋ a zbiór U ∩ N ⊆ U
jest domknięty. Równoważnie brzeg ∂N = N \N jest domknięty.

W twierdzeniu o rzędzie dla f : Ω→ Kq klasy Ck stałego rzędu d otrzymujemy lokalnie dla każdego
a ∈ Ω istnienie otoczeń U ∋ a, f (a) ∈W takich, że f (U) ⊆W . Wtedy f (U) jest podrozmaitością
d-wymiarową klasy Ck. f−1 (y) ∩ U jest podrozmaitością (p− d)-wymiarową.

Zachodzi twierdzenie Whitney’a: każda rzeczywista rozmaitość abstrakcyjna m-wymiarowa daje się
zanurzyć ze strukturą w przestrzeń R2m+1, to znaczy potraktować jak podrozmaitość R2m+1 (bez
zmiany klasy). Twierdzenie nie zachodzi w przypadku zespolonym – jedyne podrozmaitości zwarte
Cn to zbiory skończone, a na przykład sfera Riemanna Ĉ jest zwarta i wymiaru 1.

24. Podrozmaitości z brzegiem
2026-01-08

Definicja 46. ∅ ≠ N ⊆ Rm jest n-wymiarową podrozmaitością klasy Ck z brzegiem, jeśli dla każdego
a ∈ N istnieje otoczenie V ∋ a takie, że zachodzi jeden z wykluczających się warunków:

• istnieje Ck-dyfeomorfizm prostujący F : V → W ∈ topRm, czyli taki, że F (a) = 0 oraz
F (N ∩ V ) =

(
Kn × {0}m−n

)
∩W ,

• istnieje Ck-dyfeomorfizm Φ : V → U ∈ topRm taki, że Φ (a) = 0 i Φ (N ∩ V ) = U ∩
{x ∈ Rm : xn ≥ 0, xn+1 = . . . = xm = 0}

oraz jeśli oznaczymy ∂N = {a ∈ N : w a zachodzi drugi warunek}, to ∂N ̸= ∅. Zbiór ∂N nazy-
wamy brzegiem podrozmaitości N .

Uwaga. Powyższe warunki wykluczają się, bo gdyby istniały oba odwzorowania Φ i F , to Ψ = Φ ◦
F−1 :W → U jest Ck-dyfeomorfizmem pomiędzy otoczeniami 0 takim, że Ψ

(
W ∩ Rn × {0}m−n

)
=

U ∩ Rn−1 × R≥0 × {0}m−n, więc można go potraktować jako odwzorowanie Rn ⊇ W̃ → Ũ ⊆ Rn.
Skoro d0 Ψ jest monomorfizmem, to jest izomorfizmem, więc Ψ jest w otoczeniu zera odwzorowaniem
otwartym, co przeczy temu, czym jest obraz Ψ, bo Hn = {x ∈ Rn : xn ≥ 0} nie jest homeomorficzne
z kulą Bn.
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Twierdzenie 54. Niech N ⊆ Rm będzie n-wymiarową podrozmaitością klasy Ck z brzegiem. Wtedy
N \∂N jest n-wymiarową podrozmaitością klasy Ck, a ∂N jest (n− 1)-wymiarową podrozmaitością
klasy Ck.
Dowód. Pierwsze oczywiste z definicji dyfeomorfizmu prostującego, a dla a ∈ ∂N mamy ∂N ∩ V =

Φ−1
(
U ∩ Rn−1 × {0}m−n+1

)
, bo dla z ∈ U ∩ Rn−1 × R>0 × {0}m−n istnieje otoczenie Uz ⊆ U w

którym każdy x ∈ Uz ma xn > 0, a z tego wynika, że jest w nim spełniony pierwszy warunek. Zatem
mamy dyfeomorfizm prostujący, co dowodzi tezy.

Definicja 47. Ustalmy n-wymiarową podrozmaitość N ⊆ Km klasy Ck oraz ∅ ≠ G ⊆ Kn. Odwzoro-
wanie g : G→ Km nazywamy lokalną parametryzacją (lokalnym opisem, mapą odwrotną, lokalnym
układem współrzędnych) klasy Ck dla N , gdy g jest immersją klasy Ck i istnieje V ∈ topKm takie,
że g (G) = N ∩ V i jest to homeomorfizm na N ∩ V .

Definicja 48. Rodzinę {gi}i∈I lokalnych parametryzacji podrozmaitości N klasy Ck nazywamy atla-
sem odwrotnym, jeżeli

⋃
i∈I gi (Gi) = N .

Propozycja 32. Każda podrozmaitość posiada atlas odwrotny mocy co najwyżej ℵ0, a jeśli jest
zwarta, to posiada nawet skończony atlas odwrotny.

Dowód. Skoro N ⊆ Km, to możemy wykorzystać drugi aksjomat przeliczalności, a więc własność
Lindelöffa.

Twierdzenie 55 (O przejściówkach). Niech N ⊆ Km będzie n-wymiarową podrozmaitością klasy
Ck, Vj ∈ topKm, Gj ∈ topKn dla j = 1, 2. Niech gj : Gj → N ∩ Vj =: Wj będą dwiema
lokalnymi parametryzacjami takimi, żeW1∩W2 ̸= ∅ orazHj = g−1

j (W1 ∩W2) ⊆ Gj . Odwzorowanie
χ = g−1

2 ◦ g1|g−1
1 (U1∩U2)

: H1 → H2 jest Ck-dyfeomorfizmem.

Dowód. Oczywiście χ jest homeomorfizmem, więc iniekcją i wystarczy pokazać, że dla każdego
t ∈ H1 różniczka dt χ jest izomorfizmem.

25. Stożki styczne i normalne
2026-01-08

Definicja 49. Niech N ⊆ Km będzie n-wymiarową podrozmaitością klasy Ck, f : N → Kp funkcją.
Mówimy, że f jest klasy Cℓ dla 1 ≤ ℓ ≤ k, jeśli dla każdego a ∈ N istnieje lokalna parametryzacja
g podrozmaitości N w punkcie a, przy której f ◦ g jest klasy Cℓ.

Uwaga. W powyższej sytuacji f ◦ g̃ jest klasy Cℓ dla dowolnej lokalnej parametryzacji g̃, bo f ◦ g̃ =
f ◦ g ◦ g−1 ◦ g̃.

Twierdzenie 56. Niech N ⊆ Km będzie n-wymiarową podrozmaitością klasy Ck, f : N → Kp

funkcją, a 1 ≤ ℓ ≤ k. Wówczas f jest klasy Cℓ wtedy i tylko wtedy, gdy dla każdego a ∈ N istnieje
otoczenie a ∈ V ⊆ Km takie, że istnieje f̃ : V → Kp klasy Cℓ taka, że f̃ |V ∩N = f |V ∩N .

Dowód.

Definicja 50. Dla f : N → Kp klasy Cℓ na podrozmaitości klasy Ck możemy określić różniczkę
da f := da f̃ |TaN : TaN → Kp, gdzie f̃ jest dowolnym rozszerzeniem klasy Cℓ na otoczenie punktu
a ∈ N .

Definicja 51. Niech E będzie przestrzenią unormowaną nad K, a ∈ E oraz A ⊆ E. Zbiór S ⊆ E
nazywamy rzeczywistym (odpowiednio zespolonym) stożkiem o wierzchołku w zerze, gdy S ̸= ∅
oraz dla każdego λ ∈ R≥0 (odpowiednio λ ∈ C) zachodzi λS ⊆ S.
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Definicja 52. Stożek styczny Peany do A w punkcie a określamy jako

Ca (A) =
{
v ∈ E | ∃(aν)⊆A:aν→a ∃(λν):λν>0 λν (aν − a)→ v

}
.

Propozycja 33. 1. Ca (A) ̸= ∅ ⇐⇒ a ∈ A.

2. Dla a ∈ A zbiór Ca (A) jest stożkiem rzeczywistym.

3. Jeśli 0 ̸= v ∈ Ca (A) i v = limν→∞ λν (aν − a), to aν−a
∥aν−a∥ →

v
∥v∥ .

4. Stożek S ⊆ E jest wyznaczony jednoznacznie przez swój ślad na SE , przy czym S ∩ SE =
∅ ⇐⇒ S = {0}.

5. Jeśli a jest punktem izolowanym A, to Ca (A) = {0}.

6. Jeśli a ∈ intA, to Ca (A) = E.

7. Ca (A) zależy wyłącznie od kiełka (A, a).

Propozycja 34. Niech F,G będą przestrzeniami unormowanymi nad K, E = F×G z normą produk-
tową oraz A ⊆ E. Jeśli istnieje otoczenie zera U ⊆ E i C > 0 takie, że U∩A ⊆ {(x, y) : ∥y∥ ≤ C ∥x∥},
to C0 (A) ∩ {0} ×G = {0}. Implikacja w drugą stronę zachodzi, o ile dimG < +∞.

Dowód.

Propozycja 35. Jeśli E,F są przestrzeniami Banacha nad K, f : (E, a)→ (F, b) jest ciągłe w a, to
jeśli f jest różniczkowalne w a, to istnieje podprzestrzeń wektorowa Λ ⊆ E × F taka, że dimΛ =
dimE, Λ∩{0}×F = {0} i Λ = C(a,b) (Γf ). Przeciwna implikacja zachodzi, o ile dimE,dimF < +∞.

Dowód.

Twierdzenie 57. Niech N ⊆ Km będzie n-wymiarową podrozmaitością klasy Ck, a ∈ N , v ∈ Km.
Następujące warunki są równoważne.

1. v ∈ TaN .

2. Istnieje ε > 0 i γ : εD→ N klasy Ck takie, że γ (0) = a i γ′ (0) = v.

3. v ∈ Ca (N).

Dowód.

Twierdzenie 58. Niech ϕ : (Km, a) → (Kn, b) będzie klasy C1, a ∈ A, gdzie A ⊆ Km. W takiej
sytuacji da ϕ (Ca (A)) ⊆ Cb (ϕ (A)), gdzie równość zachodzi, gdy ker da ϕ∩Ca (A) = {0} o ile ϕ jest
określone w otoczeniu A, które musi być zwarte lub ϕ|A jest właściwe (przeciwobraz zwartego jest
zwarty) a do tego ϕ−1 (b) ∩A = {a} (spełnia to na przykłady dyfeomorfizm).

Dowód.

Definicja 53. Dla stożka rzeczywistego S ⊆ Rn o wierzchołku w zerze definiujemy jego stożek nor-
malny N (S) = {w ∈ Rn : ∀v∈S ⟨w, v⟩ ≤ 0}. Gdy S = Ca (A) stosujemy zapis Na (A) = N (Ca (A)).

Uwaga. N (S) jest stożkiem rzeczywistym, N (S)∩S = {0}. Jeśli S jest podprzestrzenią wektorową,
to N (S) = S⊥.

Propozycja 36. Jeśli a ∈ A ⊆ Rm świadczy o wartości d (x,A) = inf {∥x− a∥ : a ∈ A} w normie
euklidesowej (przy ustalonym x), to x− a ∈ Na (A).

Dowód. Chcemy pokazać ⟨x− a, v⟩ ≤ 0 dla v ∈ Ca (A) \ {0}. Mamy v = limν→∞ tν (aν − a) dla
pewnych ciągów, wtedy ∥x− aν∥ ≥ ∥x− a∥, bo aν ∈ A. Po przeliczeniach mamy tezę.

Definicja 54. Dla podrozmaitości N ⊆ Km i punktu a ∈ N określamy przestrzeń normalną do N w
punkcie a jako NaN = (TaN)

⊥ (względem standardowego iloczynu skalarnego).
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Uwaga. Jeśli N jest podrozmaitością rzeczywistą, to Ca (N) = TaN , więc NaN = Na (N).

26. Ekstrema warunkowe 2026-01-12

Definicja 55. Niech (X, τ) będzie przestrzenią topologiczną. Rozważamy funkcję f : X → R i
Y ⊆ X. Ekstrema funkcji f |Y nazywamy ekstremami warunkowymi na zbiorze Y .

Uwaga. Najlepiej bada się sytuację, gdy X = Rm a Y ⊆ Rm jest podzbiorem „regularnym”, np.
podrozmaitością (przynajmniej kawałkami).

Przykład (Programowanie liniowe). Niech f (x) = ⟨c, x⟩ będzie formą liniową Rm → R. Niech Y =
{x ∈ Rm : ⟨ai, x⟩ ≤ bi, i = 1, . . . , n}. Można pokazać, że jeśli f |Y osiąga minimum, to osiąga je na
∂V Y , gdzie V jest otoczką afiniczną Y (najmniejszą przestrzenią afiniczną zawierającą Y ). Ponadto
jeśli f |Y ma minimum lokalne w a, to jest to minimum globalne, co w tym wypadku jest równoważne
−c ∈ Na (Y ).

Twierdzenie 59 (Silny warunek konieczny). Niech f : A → R będzie n-krotnie różniczkowalna w
a ∈ A ⊆ Rm, gdzie m ≥ 1, n ≥ 2. Zakładamy, że da f = 0, . . . ,d

(n−1)
a f = 0. Niech a ∈ S ⊆ A i

f |S ma minimum (maksimum) lokalne w a. Wtedy dla każdego v ∈ Ca (S) zachodzi d(n)a f (v)
n ≥ 0

(odpowiednio ≤ 0).

Dowód. Wystarczy pokazać tezę dla minimum (dla maksimum rozważamy funkcję −f). Ustalmy
Ca (S) ∋ v = limν→∞ tν (aν − a). Niech hν = aν−a→ 0. Z założenia f (a+ hν) = f (aν) ≥ f (a) dla
ν ≫ 1. Mamy 0 ≤ f (a+ hν)− f (a) = 1

n! d
(n)
a f (hν)

n
+ η (hν) ∥hν∥n. Zatem 0 ≤ 1

n! d
(n)
a f (tνhν) +

η (hν) ∥tνhν∥n → 1
n! d

(n)
a f (v).

Uwaga. W rozważanej sytuacji różniczka funkcji utożsamia się z gradientem, czyli kierunkiem naj-
szybszego wzrostu funkcji. Ponadto jeśli ∇f (a) ̸= 0, to

(
f−1 (f (a)) , a

)
jest kiełkiem C1-gładkiej

hiperpowierzchni, do której ∇f (a) jest prostopadły w a.

Uwaga. Jeśli w poprzednim twierdzeniu S jest podrozmaitością klasy C1, to otrzymujemy informa-
cję, że forma jednorodna TaS ∋ v → d

(n)
a f (v)

n ∈ R jest nieujemna (niedodatnia).

Twierdzenie 60 (Słaby warunek konieczny). Niech f : A→ R będzie różniczkowalna w a ∈ A ⊆ Rm

i a ∈ N ⊆ A, gdzie N ⊆ Rm jest podrozmaitością klasy C1. Zakładamy, że f |N ma w a ekstremum
lokalne. Wtedy da f |TaN ≡ 0.

Dowód. Ustalmy lokalną parametryzację g : G→ V ∩N . Wówczas f ◦ g ma ekstremum lokalne w
f−1 (a) ∈ G, a że jest to funkcja różniczkowalna, to mamy warunek konieczny 0 = dg−1(a) (f ◦ g) =
da f ◦ dg−1(a) g. To oznacza, że da f

(
Imdg−1(a) g

)
= 0, a ten zbiór to TaN .

Uwaga. Powyższe twierdzenie nie zachodzi, gdy zbiór jest osobliwy i mamy do dyspozycji tylko
stożek styczny. Niech S : y2 = x3. Wtedy C(0,0)S = [0,+∞) × {0}. f (x, y) = x ma minimum w
(0, 0), ale d(0,0) f = f , co nie znika na stożku stycznym.

Uwaga. N : y = x3 jest podrozmaitością R2, f (x, y) = y − x3 + x4 ograniczamy do f |N = x4, co
ma minimum w a = (0, 0). Mamy da f =

[
0 1

]
̸= 0, ale na TaN = R × {0} się zeruje, d2a f = 0.

Forma 1
3! d

3
a f. (x, 0)

3
= −x3 nie jest nieujemna. Wynika to z faktu, że pierwsza pochodna nie zeruje

wszędzie.

Uwaga. Mamy NaN = (TaN)
⊥

= Lin {∇hj (a) : j = 1, . . . ,m− n}, gdzie h jest submersją opisu-
jącą. Zatem da f |TaN = 0 jest równoważne ∇f (a) ∈ NaN , a więc ∇f (a) =

∑m−n
j=1 λj∇hj (a) dla

pewnych λ1, . . . , λm−n ∈ R zwanych mnożnikami (multipliers) Lagrange’a.
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Twierdzenie 61. Niech f : A → R będzie n-krotnie różniczkowalna w a ∈ A ⊆ Rm dla m ≥ 1,
n ≥ 2. Załóżmy, że da f = 0, . . . ,d

(n−1)
a f = 0 i a ∈ S ⊆ A oraz d

(n)
a f (v)

n
> 0 (odpowiednio < 0)

dla v ∈ Ca (S) \ {0}. Wtedy f |S ma w a silnie minimum (maksimum) lokalne.

Dowód. Zakładamy nie wprost, że f |S nie ma w a minimum lokalnego, a więc istnieje ciąg niezero-
wych wektorów hν → 0 taki, że a+hν ∈ S oraz f (a+ hν) < f (a). Wektory hν

∥hν∥ są poprawnie okre-
ślone i leżą na zwartym Sm−1, więc ograniczając się do podciągu można założyć, że hν

∥hν∥ → v ∈ Sm−1

i wtedy v ∈ Ca (S) \ {0}. Mamy 0 > f (a+ hν)− f (a) = 1
n! d

(n)
a f (hν)

n
+ η (hν) ∥hν∥n, co po prze-

mnożeniu przez 1
∥hν∥n i przejściu do granicy daje 1

n! d
(n)
a f (v)

n ≤ 0, co daje sprzeczność.

Uwaga. Jeśli w poprzednim twierdzeniu zbiór S jest podrozmaitością klasy C1, to w założeniach
mamy dodatnio (ujemnie) określoną formę jednorodną stopnia n TaN ∋ v → d

(n)
a f (v)

n ∈ R.

Propozycja 37. Niech fi : A→ R dla i = 1, 2 będą dwukrotnie różniczkowalne w a ∈ A ⊆ Rm. Niech
N ⊆ Rm będzie podrozmaitością klasy C1 taką, że a ∈ N ⊆ A oraz f1|N = f2|N i da f1 = da f2.
Wtedy d2a f1|∆(TaN) = d2a f2|∆(TaN), gdzie ∆(TaN) oznacza przekątną.

Dowód. Funkcja g = f1−f2 jest różniczkowalna w a, mamy da g = 0 i g|N ≡ 0, więc ma ekstremum
w a (minimum i maksimum). Zatem TaN ∋ v → d2a g (v)

2 ∈ R jest jednocześnie niedodatnie i
nieujemne, czyli jest zerowe.

Pomysł. Mając a ∈ N ⊆ A ⊆ Rm, gdzie N jest podrozmaitością klasy C1 a f : A → R jest dwu-
krotnie różniczkowalna w a szukamy modyfikacji f̃ takiej, że f̃ |N = f |N , ale da f̃ = 0. Pokazaliśmy
już, że niezależnie od wyboru f̃ forma zadana drugą różniczką nie zmienia się.

Przykład. Niech f będzie różniczkowalna w całym Ω. F będzie funkcją Lagrange’a (skojarzoną z
f) zadaną przez F : Ω × Rm−n ∋ (x, λ) → f (x) −

∑m−n
j=1 λjhj (x) ∈ R. F jest różniczkowalna i

∇F (x, λ) =
[
∇f (x)−

∑m−n
j=1 λj∇hj −h (x)

]
. Ten gradient jest zerowy dokładnie, gdy ∇f (x) =∑m−n

j=1 λj∇hj (x) i h (x) = 0, a więc dokładnie, gdy x ∈ N i dx f |TxN = 0. Zatem zera ∇F
wyznaczają wszystkie punkty N , w których f |N może mieć ekstremum lokalne.

Ustalmy punkt x̃, λ̃ taki, że ∇F
(
x̃, λ̃

)
= 0. Rozważmy funkcję różniczkowalną f̃ : Ω ∋ x →

F
(
x, λ̃

)
∈ R. Oczywiście f̃ |N = f |N (bo N = h−1 (0)). Ponadto dx̃ f̃ = dx̃ f −

∑m−n
j=1 λ̃j dx̃ hj = 0.

Jeżeli h i f są dwukrotnie różniczkowalne (przynajmniej) w znalezionym punkcie x̃, to możemy
zbadać macierz Hesse’go B =

[
∂2f

∂xi∂xκ
(x̃)−

∑m−n
j=1 λ̃j

∂2hj

∂xi∂xκ
(x̃)
]
i,κ=1,...,m

na Tx̃N , czyli formę

kwadratową Tx̃N ∋ v → vTBv ∈ R. Wykorzystać możemy dodatkowo lokalną parametryzację
g : G → V ∩ N . Zachodzi Tx̃N = Imdg−1(x̃) g, a więc oznaczając macierz C = dg−1(x̃) g mamy do
zbadania formę kwadratową Rn ∋ w → (Cw)

T
B (Cw) ∈ R, a więc WT

(
CTBC

)
w. Ta macierz jest

symetryczna, a więc dysponujemy kryteriami dodatniej (ujemnej) określoności.

Jeżeli f jest więcej razy różniczkowalna a d2a f̃ znika na ∆(TaN) to podobną metodą można otrzymać

wielomiany pierwszego stopnia dające dalszą modyfikację ˜̃f taką, że d2a
˜̃
f = 0.

27. Uzupełnienie
2026-01-19

Definicja 56. Odwzorowanie r : X → X, gdzie X jest przestrzenią topologiczną, nazywamy retrak-
cją, gdy jest ciągłe oraz r ◦ r = r.

Propozycja 38. r ◦ r = r ⇐⇒ r|r(X) = id|r(X).

Propozycja 39. Niech V będzie przestrzenią wektorową a ℓ : V → V odwzorowaniem liniowym.
Wtedy ℓ ◦ ℓ = ℓ wtedy i tylko wtedy, gdy ker ℓ = Im (ℓ− idV ).
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Dowód. ( =⇒ ) x ∈ ker ℓ ⇐⇒ ℓ (x) = 0 ⇐⇒ x = x− ℓ (x) = ℓ (−x)− (−x) ∈ Im (ℓ− idV ).

(⇐= ) ℓ (x)− x ∈ ker ℓ =⇒ ℓ (ℓ (x))− ℓ (x) = 0.

Twierdzenie 62 (O retrakcji). Niech D ⊆ Km będzie obszarem, r : D → D retrakcją klasy Ck dla
k ∈ N+∪{∞, ω}. W takiej sytuacji r (D) jest domkniętą i spójną podrozmaitością klasy Ck obszaru
D.
Dowód. r (D) = {x ∈ D : r (x) = x} jest spójny z twierdzenia Darboux i domknięty z własności T2.

Różniczkując r◦r = r mamy dr(x) r◦dx r = dx r. Wobec r (x) = xmamy ker dx r = Im (dx r − idKm).
Ale m = dimker dx r+dim Imdx r = dim Im (dx r − idKm)+ dim Imdx r = rg (r − id) (x)+ rg r (x).
Rząd jest półciągły z dołu – w otoczeniu może tylko wzrosnąć. Wobec stałości poprzedniej sumy
oba jej składniki muszą być stałe, a więc dla każdego a ∈ r (D) istnieje otoczenie Ua ∋ a w D takie,
że dla wszystkich x ∈ Ua ∩ r (D) jest rg r = const. Wobec spójności r (D) dostajemy, że rząd r jest
stały na całym r (D).

rg (r ◦ r) (x) ≤ rg r (r (x)) = const = ζa dla wszystkich r (x) ∈ Ua ∩ r (D). Z ciągłości istnieje Va
takie, że r (Va) ⊆ Ua. Czyli dla x ∈ Va mamy rg r (x) ≤ rg r (a). Z półciągłości z dołu mamy
a ∈Wa ⊆ Va takie, że dla x ∈Wa jest rg r (x) = rg r (a). Ze spójności r (D) mamy stałość rzędu na
U =

⋃
a∈r(D)Wa.

Stosując twierdzenie o rzędzie mamy u ◦ r ◦w (x1, . . . , xm) = (x1, . . . , xd, 0, . . . , 0), co oznacza, że u
jest dyfeomorfizmem prostującym r (D).

Lemat 8 (Nash; 1952). Niech ∅ ≠ N ⊆ Rm będzie podrozmaitością klasy Ck dla k ≥ 2. Ist-
nieje otoczenie N ⊆ U takie, że dla każdego x ∈ U istnieje dokładnie jeden m (x) ∈ N taki, że
∥x−m (x)∥ = d (x,N) oraz funkcja U ∋ x → m (x) ∈ Rm jest klasy Ck−1 (do tego można wybrać
U domknięte).

Dowód. Dla a ∈ N , r > 0 i każdego x ∈ B (a, r) istnieje N ∈ N ∩ B (a, 2r) takie, że d (x,N) =
∥x− z∥, czyli d (x,N) = d (x,N ∩B (a, 2r)).

Dla x ∈ Rm, z ∈ N takich, że ∥x− z∥ = d (x,N) wiemy, że x − z ∈ NzN . Rozważmy lokalną pa-
rametryzację g : (G, 0)→ (N ∩ V, a) klasy Ck. Mamy Tg(t)N = Imdt g = Lin

{
∂g
∂t1

(t) , . . . , ∂g
∂tn

(t)
}

.

Wprowadzamy F : V × G ∋ (x, t) →
(〈
x− g (t) , ∂g

∂ti
(t)
〉)n

i=1
∈ Rn, które jest klasy Ck−1. Mamy

F (x, t) = 0 ⇐⇒ x− g (t) ∈ Ng(t)N . Możemy przyjąć, że V = B (a, 2r) i N ∩ V jest domknięte w
V .

Dla x ∈ B (a, r) znajdziemy t ∈ G takie, że g (t) ∈ N ∩ V realizuje d (x,N). Wtedy F (x, t) = 0.

Ponadto F (a, 0) = 0. Mamy ∂F
∂t (a, 0) = (−1)n

∑
1≤i1<...<in≤m

(
det ∂g

∂(ti1 ,...,tin)
(0)

)2

̸= 0.

Z twierdzenia o funkcji uwikłanej mamy otoczenie (a, 0) ∈W × T ⊆ B (a, 2r)×G takie, że istnieje
τ : W ∋ x → τ (x) ∈ T klasy Ck−1 takie, że F (x, t) = 0 ⇐⇒ t = τ (x). Dobieramy ra > 0 tak,
by B (a, 2ra) ∩ N ⊆ W ∩ g (T ). Wtedy dla x ∈ B (a, ra) istnieje y ∈ B (a, 2ra) ∩ N ⊆ W ∩ g (T )
realizujące d (x,N) i wówczas F

(
x, g−1 (y)

)
= 0, czyli y = g (τ (x)).

Określamy ma (x) = g (τ (x)), U =
⋃

a∈N B (a, ra), a odpowiednie funkcje sklejają się dzięki jedno-
znaczności z twierdzenia o funkcji uwikłanej.

Twierdzenie 63 (Poly, Roby; 1984). Niech ∅ ≠ X = X ⊊ Rm, δX (x) = d (x,X)
2, k ≥ 2. Definiujemy

zbiór punktów regularnych klasy Ck jako

RegkX =
{
a ∈ X : (X, a) jest kiełkiem podrozmaitości klasy Ck

}
.

Zachodzi RegkX =
{
x ∈ Rm : ∃U∋x δX |U jest klasy Ck

}
∩X.

Definicja 57. Dla ∅ ≠ X = X ⊊ Rm oznaczamy mX (x) = {z ∈ X : ∥x− z∥ = d (x,X)}. Szkieletem
zbioru X (medial axis) nazywamy MX = {x ∈ Rm : |mX (x)| > 1}.
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Twierdzenie 64 (Clarke; 1975). Niech ∅ ̸= X = X ⊊ Rm, δX (x) = d (x,X)
2. MX jest równy

zbiorowi punktów nieróżniczkowalności funkcji δX .

Uwaga. d (x,X) jest 1-lipschitzowska, więc δX jest lokalnie lipschitzowska, co z twierdzenia Rade-
machera mówi nam, że δX jest różniczkowalna prawie wszędzie (względem miary Lebesgue’a).
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