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Maciej Mikotajczak

1. Wstep do analizy wielu zmiennych

Notacja. Przez (E, a) bedziemy oznaczaé¢ dowolne otoczenie a € E w przestrzeni E.

Twierdzenie 1 (Oryginalne Darboux). Niech F : (a,b) — R bedzie r6zniczkowalna, —oo < a < b <
+oo. Niech f = F' i a < u < v < b oraz niech yo bedzie $cisle pomiedzy f (u) i f(v). Istnieje
to € (u,v) takie, ze f (to) = yo.

Dowdd. Rozwazmy funkcje g (t) = F (t) — tyo, ktora jest rézniczkowalna i ma pochodna ¢’ (t) =
f(t) — yo. Jest ona ciagta, wiec osiaga kresy na [u, v]. Jesli ekstremum lokalne jest w $rodku tego
przedziatu, to pochodna sie zeruje i mamy to, co chcemy.

Zalozmy, ze f(u) < f(v). Mamy ¢’ (u) < 0, ¢’ (v) > 0. Z ilorazu réznicowego ¢ (t) < g(u) dla
t € (u,u+e)oraz g(t) < g(v) dlat € (v—e,v) przy pewnym malym e. Zatem minimum lokalne
jest w (u,v). Dla f (u) > f (v) analogiczny argument daje maksimum. O

Uwaga. Funkcja f nie musi by¢ ciaggta, ale np. nie moze mieé nieciagltosci skokowych.

Propozycja 1. Niech E bedzie przestrzenia Banacha nad R, a < b w R, f : [a,b] — E bedzie
n-krotnie rézniczkowalna (dla n = 0 chodzi o cigglosé, na koricach patrzymy na pochodne jed-
nostronne). Istnieje ' : R — E taka, ze F(k)|[a7b] = f®) dla k € {0,...,n} oraz F|R\[a,5] jest
analityczna.

Dowdéd. Ustalamy

Fa(t):f(a)+f’+(a)(t—a)+%fi(t—a)2+...+% j_")(a)(t—a)"

i tak rozszerzamy z lewej strony, z prawej analogicznie. Ta funkcja jest wielomianem i tatwo spraw-
dzié, ze pochodne sie zgadzaja. O

Uwaga. W przypadku wielu zmiennych jest duzo trudniej, bo zmienia sie geometria dziedziny (nie
mamy linii z dwoma koricami).

Uwaga. Przy definiowaniu pochodnych funkcji jednej zmiennej wykorzystywalismy strukture ciata
dziedziny (dzielenie). Dla funkcji wielu zmiennych bedziemy potrzebowali innej definicji. Pochodna
bada zachowanie funkcji w punkcie poprzez poréwnanie przyrostu wartosci do przyrostu argumentu.
W praktyce szukamy odwzorowania liniowego, ktére dobrze przybliza przyrost funkcji w punkcie.

Uwaga. Dla przestrzeni skornczenie wymiarowej K™ i funkeji f : (K™, a) — F mamy rézniczke w
punkcie a d,, f € £ (K™, F). Po ustaleniu bazy kanonicznej e, ..., e, mamy

do f(v) =da f (va) = Zvidaﬂei) = (v,(da f(e1),...,da f (em)))

jesli rozwazamy F = K i standardowy iloczyn skalarny. Stosujemy notacje grad f (a) = Vf (a) =
(ﬂ (a),..., 2L (a)) € K™ (gdzie % (a) =d, f (e;)) i nazywamy taki wektor gradientem, a jego

oz, ? 0T
elementy pochodnymi czgstkowymi. W przypadku K = R niezerowy gradient wyznacza kierunek

najszybszego wzrostu funkcji f w punkcie a.
Uwaga. Rozniczkowanie f : (K™, a) — K" sprowadza si¢ do rézniczkowania jej sktadowych.

Uwaga. Latwo pokazac, ze % (a) = limy_q
J

w kierunku e;, a wiec pochodnej funkcji jednej zmiennej (K, 0) 3 ¢ — f (a + te;) zwanej przekrojem
f w kierunku e;.

w, co odpowiada pochodnej kierunkowej f
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Analiza Matematyczna 3 Maciej Mikotajczak

Uwaga. Istnienie rézniczki implikuje istnienie pochodnych czastkowych, ale implikacja w druga
strone juz nie zachodzi (cho¢ pochodne czastkowe daja jedynego mozliwego kandydata na rézniczke,
bo jest nim L (v) = 3> 2L (a) v;).

dx;
I Notacja. Dla odwzorowania liniowego L czesto zamiast L (x) piszemy L.z lub Lz.

Przykfad. Niech L € £ (R",R), co jest rownowazne istnieniu a € R"™ takiego, ze L (z) = (z,a).
Wtedy ||L[|; = [la]|, co wynika z nieréwnosci Cauchy’ego-Schwarza, bo [(z,a)| < [|z|| [|a]|, a podsta-
wiajac z = o dostajemy L (z) = ||zl [lal|. Z pierwszego faktu wynika [|L||; < |la|, a z drugiego

el

ILllf = llall-

2. Pochodne miedzy przestrzeniami Banacha

Twierdzenie 2 (Banach). Niech E, F beda przestrzeniami Banacha, f : E — F izomorfizmem
liniowym i ciaglym. Wtedy F € Isom (E, F).

Uwaga. Dalej bedziemy rozwazaé funkcje miedzy przestrzeniami Banacha, mimo, ze zupelnosé nie
zawsze bedzie potrzebna. Bedziemy rozwazaé przestrzenie Banacha FE, F nad K, zbior A C F,
funkcje f: A — Fia€ A

Definicja 1. Odwzorowanie f jest rézniczkowalne w a, gdy a € int A oraz istnieje funkcja L €
L (E,F) taka, ze
Veso Irso ([Rll <rAa+hed) = ([f(a+h)— f(a) - LB <elh]]).

Warunek a € int A oznacza, ze istnieja odpowiednie h. Odwzorowanie L nazywamy rozniczka
(Frécheta) funkcji f w punkcie a i oznaczamy ja na jeden ze sposobow L = d, f = f'(a) =

Daf=Df(a) =Taf=0f(a)

Wartosé rozniczki na argumencie h oznaczamy d, f (h) lub f’ (a) .h.

Uwaga. Przy pochodnej Cantora zamiast ciaglosci L zada sie ciaglosci f. Te definicje sg rowno-
wazne.

Propozycja 2. Jesli rozniczka istnieje, to jest wyznaczona jednoznacznie.
Dowaéd. Jesli Ly, Lo sg rozniczkami f w a, to

[L1.h = Ly.h|| < ||Lyh = f(a+h) + f(a)l + =Lk + f(a+h) = F(a)]| < 2e]lh],
gdzie nieréwnosci zachodza dla ||h|| < r dla pewnego r.

Dla z € E\ {0} i h = rZ; mamy H(L1 — Ly). (rﬁ) H < 2% Hrﬁ , cayli ||[(L1 — Lo) .|| < 2¢ ||z,

skadd L1 = LQ. ]

Propozycja 3. Jesli f jest rozniczkowalna w a, to jest ciggla w a.

Dowéd.
1f @)= £ (@) £do f (5 —a)l| <l —all + |da f (& — )| < 1 — all + o £ 1 — al.

O

Propozycja 4. Rozniczkowalnosé i postaé rézniczki nie zalezy od wyboru normy — mozemy ja, za-
stapi¢ przez dowolng norme réwnowazna.
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Definicja 2 (Notacja Bachmanna-Landaua). Rozwazmy przestrzen topologiczng (X, 7) i punkt a €
X (dla ustalenia uwagi). Niech F,G beda przestrzeniami unormowanymi (by¢ moze nad réznymi
ciatami) i A, B C X oraz a € int (AN B), f € F4,g € GP.

Piszemy f = O (g) (f jest O duze od g w punkcie a), jesli
Im>0 Irsvsavcans Yeev ||If (@) < M g ()]l
Piszemy f = o0(g) (f jest o mate od g w punkcie a), jesli

Ves0 Irsusaucans Yeer ||f (@)|| <ellg(x)] .

I Uwaga. Jesli f = 0(g), to musi by¢ f (a) = 0.

Propozycja 5.

f=0(9) < Feanp-r §(a) =0, f(z) = [lg ()] (x) oraz £ jest ciagle w a.
Dowéd. ( = ) Definiujemy

_ o, r=aVg(x)=0
“x)—{l;;g;;l, gD E0

(<= Z definicji ciaglosci. O

Definicja 3. f; € F4 :i=1,2, g€ GB, a cint (A; N Ay N B). Wtedy f, — f2 jest dobrze okreslona
na Ay N Ay = A. Piszemy fo = f1 + O (g), jesli fo — f1 = O (g) i analogicznie dla o.

Uwaga. W badaniu rézniczkowalnosci rozwazamy translacje w E, a te sa homeomorfizmami, wiec
a€intA = 0€int(A—a)ifunkcja h — f (a+ h) jest dobrze okreslona dla A — a.

Warunek z definicji rézniczkowalnosci mozna zapisaé jako

fla+h) = f(a) — L.h =o(h) (w zerze).

Definicja 4. Niech f € F4, g€ FB, A, BCE. figsastyczne w a (f ~q g), jesli a € int (AN B) i
Veso Irso (o —all <rz e ANB) = (|f(z) —g @) <elz—al),
czyli (f —g) () = o(z —a).

Propozycja 6. Rozniczkowalno$é f z rozniczka L jest rownowazna obu z nastepujacych warunkow:
1. frg(E32—L(z—a)+ f(a)€eF).
2. L~y ((A=a)>h— f(a+h)— f(a) EF).

Propozycja 7. 1. ~, jest relacja rownowaznosci na zbiorze {f : A — F | a € int A}.
2. frag = fla)=g(a)
3. fr~ag = (f claglaw a <= g ciagla w a).
4. f,g liniowei f ~, g = f=g.

5. Styczno$¢ nie zmienia sie po zamianie normy na réwnowazna.

Lemat 1. Rozniczkowalnosé jest rownowazna istnieniu:

1. £ : A—a — F takiego, ze £(0) = 0, £ ciaglte w 0 oraz dla h € A — a jest f(a+h) =

2. Pochodne miedzy przestrzeniami Banacha Strona 4,/49
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fla)+ L.h 4 & (h) [|R].

2. n: A — F takiego, ze n(a) =0, n ciagle w a oraz dla z € A jest f(z) = f(a) + L. (x — a) +
n(z) ||z —al.

Przyktad. 1. f: A — F stale mad, f =0.
9. DlaL e L(E,F)if=L|ajestd,f=L.
3. Dla E =K f jest rozniczkowalne w a z d, f.A = Av dla pewnego v € F' wtedy i tylko wtedy,
g f@)=fla) _

gdy limy 4 =v

r—a

Uwaga. Mamy izometrie £ (K, F) ~ F zadana poprzez FF > v — (K3 A= e F) € L(K, F).
Daje nam ona zgodnos$é rachunku rézniczkowego budowanego teraz z tym zbudowanym juz wcze-
$niej.

Definicja 5. Definiujemy A" = {a € A | f rézniczkowalna w a} C int A. Odwzorowanie f’: A1) 3
x — d, f € L(FE,F) nazywamy odwzorowaniem pochodnym lub po prostu pochodna.

f jest rozniczkowalne, jesli jest rézniczkowalne w kazdym punkcie swojej dziedziny, czyli AY) = A
(wtedy A musi by¢ otwarty).

Definicja 6. Odwzorowanie f jest klasy C', jesli jest rézniczkowalne i odwzorowanie pochodne jest
ciagle.

Przyktad. 1. A€ top(E), F: A — F stale jest klasy C' i f'=0¢€ L(E,F).
2. Le L(E,F), Actop(E), f=L|Ajest klasy C' i f' = L, czyli f’ (z) = L dla kazdego z.

3. Dla E = K mamy f’ (a) € F zdefiniowane jako granica ilorazu roznicowego. W nowej definicji
mamy f': A>a— (K3XA—= Af'(a) € F) € LK, F), co mozna utozsami¢ z f' : A > a —

f'(a) e F

Propozycja 8. 1. Jesli zaciesniamy f do B takiego, ze a € int B, to d, f = d, (f|B).
2. Zacieénianie funkcji klasy C! na zbiér otwarty daje funkcje klasy C!.
Uwaga. Przy rozwazaniu rézniczkowalnosci f : A — F rozwazamy flint 4. ROZniczkowalnosé w

punkcie jest wlasnoscia lokalng, zalezna tylko od kietka funkcji w punkcie (klasy réwnowaznosci
funkcji, ktore sa rowne w pewnym otoczeniu punktu).

3. Wlasnosci pochodnej

Twierdzenie 3. Mamy przestrzenie Banacha F, F,G nad K oraz zbiory A C E, B C F' i funkcje
f: A — F rézniczkowalna w a oraz g : B — G rozniczkowalna w b = f (a) takie, ze f (A) C B. W
takiej sytuacji g o f jest rozniczkowalne w a oraz d, (go f) = dg@ygoda f.

Dowéd. Mamy a € int A, f (z) = f(a) +d, f (x —a) + 71 (x) ||x — al|, gdzie n : A — F jest ciagta w
ain(a)=0.

Podobnie b € int B, g (y) = g (b) + dp g (y — b) + £ (v) ||y — b|| dla odpowiedniego &.

g(f(x)=9g(f(a) +ds@)g(f(x)—f(a)) +&(f (@) |f (z) - f(a)ll =

(go f)(a) +dswyg(da f(z—a)+n(z)llz—al) +&(f(2))]da f(z —a) +n(z)[z—all =
(gof)(a)+ (df@ygoda f) (z—a)

+dp@ 9 (@) Iz —all +&§(f (%)) lda f (z —a) + 7 (2) |z —all -

3. Wlasnosci pochodnej Strona 5/49
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Szacujemy dwa ostatnie sktadniki:

s 9 (0 (@) llz = all + & (f (2)) da f (z = a) + 0 (2) o = alll]| <
(s gll lln @)1+ 11€ (f @) (lda £ + I @)ID) llz — all -

Sktadniki w nawiasie daza do 0 gdy = — a, wiec mamy to, co chcemy. O

Twierdzenie 4. Mamy przestrzenie Banacha E, F,G nad K oraz zbiory A C E, B C F otwarte i
funkcje f: A — F, g: B — G klasy C! takie, ze f (A) C B. W takiej sytuacji g o f jest klasy C'.

Dowéd. Wiemy, ze (go f) : A >z — dfzygode f € L(E,G). Ta funkcja jest ciggiem zlozeri
x—= (de f, f(2) — (dgC frds@) g) — df(y) god, f. Najpierw robimy zestawienie funkcji ciagtych f’
i f, ktore jest ciggle, potem stosujemy ciagla funkcje ¢’, a na koncu sktadamy te funkcje. Wszystkie
te operacje zachowuja ciaglosé. O

Twierdzenie 5. Niech E, F' beda przestrzeniami Banacha nad K, A C E, f; : A — F dlai €
{1,....m}, au,...,ap € K. Jesli fi,..., fr sa rozniczkowalne w a € A, to > ", a; f; jest roznicz-
kowalne w a oraz d, (D10, i fi) = Yoieq @i dg fi. Jesli te funkcje sa klasy C!, to ich kombinacja
liniowa tez.

Dowéd. Mamy f; () = fi(a) + dq fi (x — a) + ||z — a]| n; (x), przemnazamy przez «;, sumujemy i
mamy.

/7

Mamy (3", cifi) = i, a;f1, co jest ciagle, gdy f/ sa ciagle, wiec mamy klase C'. O

Twierdzenie 6. Niech E, Fy, ..., F,, bedg przestrzeniami Banacha nad K, m > 2, A C E. Niech
F=Fx...xFyn, f=(f1,-.-,fm) : A— F. W takiej sytuacji f jest rozniczkowalne w a wtedy i
tylko wtedy, gdy fi,..., fm sa rozniczkowalne w a. Wowcezas d,, f = (dq f1,- .-, da fin). Dodatkowo
analogiczna réwnowazno$é zachodzi dla bycia klasy C*.

Dowéd. Niech p; : F — F; bedzie rzutowaniem, a v; : F; — F zanurzeniem. Sg one klasy C! i
liniowe.

(=) Mamy f; = p; o f, wiec mamy teze z roézniczkowalnosci p;.

(<) Mamy f = Y.I" v o f;, teza wynika z rézniczkowalnosci v; i twierdzen o zlozeniach i
kombinacjach liniowych. Z nich réwniez mamy

do f=) da(wiofi) =) dp@uviodafi=) vioda fi=(dafi)icpm»
i=1 i=1 i=1
bo v; jest liniowe, wiec jest swoja rézniczka.

Wiasnosé z klasa C! wynika z klasy C! rzutowan i zanurzen, bo dla o; : L(E,F;) 31 — v;0l €

L(E,Fy x ...x Fy) mamy f' =" ;o fl. O
Uwaga. W powyzszym twierdzeniu dostajemy réownosé f'(a) = (f (a),..., f], (a)), ale nie ma
sensu zapis f' = (f1,..., f1.), bo te odwzorowania maja inne typy.

Twierdzenie 7. Niech Fy, ..., By, Iy, ..., F, dlam > 2 beda przestrzeniami Banacha nad K, A; C
E; dla kazdego i. Niech f; : A; — F;, a = (a1,...,am,) € A1 X...x Ay, orazniech E = Ey x... X E,,,
F=F x...xFy, f=f1 x...x fn. W takiej sytuacji f jest rozniczkowalne w a wtedy i tylko
wtedy, gdy fi,--., fm sa rozniczkowalne w a;. Wowczas d, f = dg f1 X ... X dg fin- Dodatkowo
analogiczna réwnowazno$é zachodzi dla bycia klasy C*.

Dowdd. Niech p;, ¢; beda rzutowaniami odpowiednio z E' i F', a u;, v; zanurzeniami.

(=) Z rézniczkowalnosci f w punkcie ¢ mamy a € int A, wiec a; € int A;. Kladziemy a; =
(a1, .-,0i-1,0,ai11,...,an)1imamy f; = g;ofo(a; + u;|a,). Twierdzenie o zlozeniu koriczy dowod.

(<= ) Mamy a; € int A; dla kazdego i, wiec a € int A. Zapisujemy f = >"" v; 0 f; o p;|a. Z tego

3. Wlasnosci pochodnej Strona 6,/49
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wynika rézniczkowalno$é i postaé rézniczki:

daf:Zda(UiOinpi|A del(a)vzod fiodg pz|A Z'Uzoda,fzopz

=1 =1 =1

=dg, f1 X ... X da,, fm-

4. Roézniczkowanie szczegolnych odwzorowan 2025.10.00

Twierdzenie 8. Niech Fi, Es, F' bedg przestrzeniami Banacha nad K i niech ® € L (Ey, Ey; F).
Dla (ai,az), (h1,h2) € E1 X E, funkcja ® jest rézniczkowalna w (a1, az) oraz d(q, q,) ®. (h1,h2) =
® (a1, ho) + @ (hy,az). Funkcja ® jest tez klasy C*.

Dowéd.

[® (a1 + 1, a2 + he) — @ (a1,a2) — @ (a1, ha) — @ (ha, az)l| = [|® (ha, ho) | < (|} [P (|72l
< 1@l (Il + lIA2)?,

gdzie pierwsze przejscie to rozpisanie pierwszego wyrazu z dwuliniowosci. Pochodna @’ jest sumag
dwoch odwzorowarni liniowych:

Li:FEi x Ey> (a17a2> = ((hl,hg) — (I)(al,hg)) & £<E1 X EQ,F),
Lo:Fi x Ey > (al,ag) — ((hl,hg) =7 <I>(h1,a2)) & E(El X EQ,F).

Latwo sprawdzi¢ ich ciaglosé, np. |La (a1, a2) || = Supjguy sy |1 (@1, h2)| < 9] (las ] + lasl]):
Zatem @' jest ciagle, czyli ® jest klasy C*. O

Uwaga. Zauwazmy, ze w powyzszym twierdzeniu ® jest dwuliniowe, a jego roézniczka jest liniowa ze
wzgledu na cala pare argumentow.

Twierdzenie 9. Niech E, F1, Es, F' beda przestrzeniami Banacha nad K. Niech A C Fi f: A —
E1,9: A— Ey, ® € L(E1,E F), o(z) =P (f (x),9(x)) dlaxz € A. Jedli f i g sa rézniczkowalne
wa € A, to ¢ rowniez oraz d, p.h = ® (f (a),ds g.h) + P (d, f-h, g (a)). To samo zachodzi dla bycia
klasy C!.

Dowdd. ¢ = ® o (f,g), skad wynika teza na podstawie twierdzenia o zestawianiu, odwzorowaniu
dwuliniowym i sktadaniu. Pozostaje przeliczy¢:

dg Qph = d(f(a),g(a)) ®o (da fa dg g) h=2 (.f (a) 7da gh) +@ (da g'hvg (a)) :

O

Uwaga. Jesli £ =
f(a)g(a)+f(a)g

E1 = Fy, = F =K, a ®(z,y) = xy jest mnozeniem, to mamy (fg)' (a) =
"

a).

Twierdzenie 10. Niech A bedzie algebra Banacha z jedynka 14, niekoniecznie przemienna. Przez
G (A) oznaczamy grupe elementéw odwracalnych w A. Rozwazamy odwzorowanie € : G (A) 2 x —
r71 € G (A), ktore jest homeomorfizmem. W powyzszej sytuacji € jest klasy C', dlaa € G (4),h € A
mamy dg &b =—a"' - h-a” L

Dowéd. Zaktadamy, ze A # {0}. Odwzorowanie h — —a~' - h-a~! jest liniowe, ciaglo$¢ mamy

z ||-a~tha™t|| < Ha_1||2 |h||. Wiemy, ze dla a € G (A) mamy K (a ) C G(A), wiec dla

1
*la=]

4. Roézniczkowanie szczegélnych odwzorowan Strona 7/49



Analiza Matematyczna 3 Maciej Mikotajczak

heA:Hh||<”T}1Hmamya+h€G(A)i

1€ (@ + R) — £ (a) + a*lhcflu = H at+h) (la—(a+h)a™)+ fflha’lH =
|- @+m ™ hat +atha ! = |[(a7 = @+ W) ha || = 1€ (@) — € (a+ R ha <
€ (a) — <a+hnMMm*H

7 ciaglosci ¢ to wyrazenie jest odpowiednio ograniczone. Rozwazmy odwzorowanie dwuliniowe i
clagle @ : AxA > (z,y) = (A3 h — zhy) € L(A, A), gdzie ciagtos¢ wynika z || D (z, )| < ||=] |y]|-
Mamy ¢ = ® o (¢, &), skad wynika ciaglosé ¢’ O

Twierdzenie 11. Niech F, F' bedg przestrzeniami Banacha nad K takimi, ze Isom (E, F') # (. Niech
n:Isom (B, F) > g — g~ ! € Isom (F, E). W takiej sytuacji n jest klasy C! oraz dla g € Isom (E, F),
heL(E,F)mamy dgn.h =—g tohog .

Dowéd. Ustalmy ¢ € Isom (F, E) i oznaczmy ¢, : L(E,F) > L — Loy € L(F,F) oraz ¢*
L(F,F)>L — ¢poL € L(F,E). Oba te odwzorowania sg liniowe i ciaglte (ciaglos¢ z ||p. (L)]| =
|L ool <|IL|||l¢]l i analogicznie dla ¢*), a wigc sa klasy C*.

Mamy 1 = ¢* 0 £ 0 Y. |1som(E,F), €O jest ztozeniem odwzorowan klasy C!. Liczymy:

dgn.h = dg(p, () € © do, () € © dg (Pulisom(E, 7)) b = ¢* (dgop € (04 (R))) =
po (— (gog) top.(h)o(go w)_l) =-g lohog™

O

Uwaga. Zbior Isom (E, F') nie jest przestrzenia wektorowa, zatem dg 7 jest odwzorowaniem miedzy
nadprzestrzeniami £ (E, F') i L (F, E) i dlatego h € £ (E, F') nie musi by¢ izomorfizmem.

Przyktad. 1. Dla A=K jest £ : K\ {0} 52— L €K, jest & (2) w=—Iwl=—

3 ‘)—A Nm‘g

1
2. Dla A bedacego przemienna algebra Banacha mamy funkcje exp (z) = >0 . Zachodzi

exp’ (a) .h =exp (a) - h.
Dowdd.

lexp (a + h) —exp (a) — exp () - hl| = [|exp (a) exp (h) — exp (a) — exp (a) - h|| <

Z —h 2 R < Jlexp (a)]] 1B Z 11l <

n= 2 n= 2

lexp (@) | [lexp (h) = 1a = hl| < [lexp (a)]

ellexp (a)|l |,

gdzie ostatnia nier6wnos¢ zachodzi dla ||h|| < 1.

5. Pochodne kierunkowe

Definicja 7. Niech E, F' beda przestrzeniami Banacha nad K, A C E, a € A, f: A — F. Ustalamy
wektor (kierunek) v € E'\ {0}. Przekrojem zbioru A w punkcie a w kierunku v nazywamy zbior
Agp = {t e K:a+tv € A}. Przekrojem funkcji f w punkcie a w kierunku v nazywamy funkcje
faw:Agwdt— fa+tv) €F.

f(a—i—tv)—

Definicja 8. Jesli 0 € int A, ,, oraz istnieje lim;_,¢ fa) ¢ F, to granice te bedziemy nazywaé

pochodng kierunkows f w a w kierunku v i oznaczaé 5L ( ) lub £/ (a).

5 .8
(mmwmmgﬂm=;ﬂm=a@%fw+w!ﬁo
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Propozycja 9. Niech E,F beda przestrzeniami Banacha nad K, A C E, f : A —» F, a € A,
v € E\ {0}. Zakladamy, ze f jest rozniczkowalna w a. W takiej sytuacji istnieje f! (a) oraz f! (a) =
d, fov.

Dowéd. Z ¢ € int A mamy 0 € int A, ,. Mamy f, ., = f(7(¢)), gdzie 7 (t) = a + tv jest odwzoro-

waniem afinicznym, dla ktorego zachodzi d; 7.h = vh. Z twierdzenia o roézniczkowaniu ztozenia jest
do faw-h=dg fodoT.h =dg f (vh) =dg f (v) h. Zatem f] (a) = dq f (v). O

Uwaga. Zalozylismy v # 0, ale definicje daja nam A, o = K, f,0 = f(a) i zachodzi f}(a) =0 =
d, f.0, wiec powyzsze twierdzenie zachodzi dla v = 0.

Uwaga. Jesli pochodna kierunkowa % (a) istnieje, to dla kazdego A € K mamy % (a) = )\% (a),
bo lithO w = )‘hmt%O W

zaé dla v € Sg — na sferze jednostkowe;j.

. Zatem pochodne kierunkowe wystarczy rozwa-

Uwaga. Z istnienie wszystkich pochodnych kierunkowych nie wynika nawet ciagglosé funkcji. Niech
C = {(x,mQ) rx € R} i f = Xxcr2 — X{(0,0)},r2- Ta funkcja przyjmuje wartos¢ 1 na paraboli bez
(0,0), a poza tym 0. Rozwazamy pochodne kierunkowe w (0,0). W kazdym kierunku v mamy
f0,0,0 = 0 w otoczeniu (0,0) (prosta przecina si¢ z parabola tylko w jednym punkcie), a nie mamy
ciaglosci — mozna zej$¢ do (0,0) po paraboli, gdzie f (z) = 1.

Definicja 9. Jesli dla kazdego v € E istnieje % (a) oraz istnieje L € L (E, F) takie, ze %( ) =
L (v), to mowimy, ze f jest rozniczkowalne w sensie Gateaux w a, a odwzorowanie L (oznaczane
0qf) nazywamy jego rézniczka Gateaux (slaba rézniczka). Nie zadamy a € int A, wystarczy nam
0 € int A, , dla kazdego v.

Propozycja 10. 1. §,f istnieje wtedy i tylko wtedy, gdy istnieje L € L (FE,F) takie, ze dla
kazdego v € Sp mamy lim,_,o @IS — T (1), W takiej sytuacji d,f = L.

2. d, f istnieje wtedy i tylko wtedy, gdy istnieje L € L (E,F) takie, ze dla kazdego v € Sg

w = L (v) oraz ta granica jest jednostajna ze wzgledu na v. W takiej

mamy lim;_q
sytuacji d, f = L.
Dowod Pierwszy punkt w prawo oczywiste, w drugg strone bierzemy kierunek w # 0 i rozwazamy
d
v =2 € Sp. Wedy £ (a) = [[wl| 3 = |w]| L (v) = L (w).

lel

Drugi punkt: jednostajnosé granicy to Veso Jsso0 Voesy [t <§ = Hw — L(v)H <e.

Dla ||h|| < 6 biorac v = ﬁ it =||h|| mamy ||f (a +h) — f(a) = L (h)|| < e||h|. W druga strone dla

v € Sgi||tu]| < § mamy ||f (a+ tv) — f (a) — L (tv)|| < e|ftv] = & [¢], czyli H fatto)—f(a) _ H
R

Uwaga. W K™ mamy kierunki bazy kanonicznej eq,..., e, wiec dla ' = K™ piszemy é% (a) =
g—é (a) i nazywamy ten napis i-ta pochodna czastkowa. Jesli istnieje d, f € £ (K™, F'), to jest ona
wyznaczona przez warto$ci na bazie, czyli dg f (h1,..., hm) =Y iny gﬂf (a) h.

Dla F = K ma to szczegblny sens, bo wtedy d, f jest kombinacja liniowa rzutowar, ktore sa baza
L (K™ K) = (K™)". Oznaczamy wtedy rzutowanie p; jako dz; i wtedy df = Zznl 52 dai jest

odwzorowaniem pochodnym.

m

Dla F = K funkcje d, f mozna utozsamié¢ z wektorem pochodnych czastkowych (% (a)) - e K™
zwanym gradientem f i oznaczanym V f (a) lub grad f. -

Propozycja 11 Dla funkcji rozniczkowalnej f : @ — R w otwartym Q C R™ jesli Vf (a) # 0, to
kierunek HV f(a)H € S™~! jest kierunkiem najwickszego wzrostu funkcji f w punkcie a € €.
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Dowéd. Szukamy v € S™~! maksymalizujacego infinitezymalny przyrost M, czyli daja-

cego wartos¢ maxjj=1 g5 (a). Mamy 32 (a) = do f (v) = (Vf (a),0) < [Vf (@] [0l = VS (@)lI.

Maksimum jest osiagane dla vy = Hgﬁzgll' O

Uwaga. Gdy F = K", F = K™ i f = (f1,..., fm) jest rozniczkowalna w a, to d, f € L (K", K™)
utozsamiamy z macierza z M, «,, (K) zwana macierzg Jacobiego f w a, bedaca macierza pochodnych
czastkowych (rozniczka jest zestawieniem rozniczek, ktore sa wektorami).

a; (a) a; (@) .. %u Vi <a>§
£(a) 22(a) - 2 (a) Vs (a)
daf:[daf(el) daf(en) = ? :a ? :a . ? :a = 2.a
Ou(a) Ym(a) ... Ym(a)] |V

Mamy d, f.h = (dq fi (h));, € K™, co jest rtéwne mnozeniu macierzy: [gg; (a)]ie[m] - h.
J€ln]

Gdy m = n, to wyznacznik uzyskanej macierzy kwadratowej nazywamy jakobianem f w a i ozna-
czamy go Jac f (a) = detd, f.

6. Pochodne czastkowe
2025-10-16

Definicja 10. Niech E, ..., E,,, F (m > 2) beda przestrzeniami Banacha nad K, A C Ey X... X E,,,
a=(ay,...,am) € A. Przez u; : E; — E1 X ...X E,, rozumiemy zanurzenie kanoniczne. Oznaczamy
'di = (al, “en 7ai—1’07ai+17 “en ,CLm) i 171 = u; + 'dl Niech

A; = ﬂ._l (A) = {J?l eFE;: (al,...,ai_l,xi,aiﬂ,...,am) S A}

Do tego \; = U;|a, oraz if = fo);: A; — F.

Funkcje *f nazywamy i-tym odwzorowaniem czesciowym f w a. i-ta rozniczky czastkowa f w a
nazywamy (o ile istnieje) rozniczke *f w punkcie a; 1 oznaczamy ja % (a) € L(E;, F).

Uwaga. Gdy E; = K, to ‘f’ (a;) utozsamia si¢ z ‘f' (a;).1 € F, czyli otrzymujemy pochodng
czastkows (kierunkows w kierunku e;).

Uwaga. W definicji rozniczki czastkowej nie potrzebujemy a € int A, wystarczy a; € int A;. Na przy-
x, =0 .
Y zdefiniowane na A = {(m,y) ceK?:ay= 0} ma pochodne czastkowe

y?, =0
W zerze %(0,0) =1i 2—5(0,0):0.

ktad f (z,y) =

Twierdzenie 12. Niech Fy,...,E,,,F (m > 2) beda przestrzeniami Banacha nad K, A C F; X
. X Epn, a = (a1,...,a,) € A. Niech p; bedzie odpowiednim rzutowaniem kanonicznym, a wu;
zanurzeniem. W rozpatrywanej sytuacji jesli funkcja f jest rézniczkowalna w a, to istnieja g z - (a)

dlai=1,...,m oraz g—i(a)zdafouiidafzzglg—ji(a)opi.

Dowdéd. Z rézniczkowalnosci f w a mamy a € int A, wige a; € int A; dla kazdego . if = foM\; jest
zlozeniem odwzorowan rézniczkowalnych, mamy dg, * f = dy,(4;) f © da; Ai = do f 0 u;. Do tego

Zaaj (a)opiZZdafouiopi:dafozuiopi:daf,
i=1 v

=1 =1
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Uwaga. Z samego istnienia rézniczek czastkowych nie wynika nawet ciaglosé f w a, przyjmujac

_ %7 (x7y)7é(0’0) af _ o T _ _ At
f@zy)—{oj ooy (0.0) MY 5 (0:0) = 5 (0,0) =0, b0  (2,0) = £ (0.) = 0. Mamy

f(z,x) = % dla x # 0, wiec funkcja nie jest ciagta.

Uwaga. Nawet w wymiarze nieskoiiczonym ma sens zapis

of

daf~(h1,'~'ahm) 61‘1() 8xm() ’

gdzie mnozenie odpowiada warto$ciowaniu 8%: (a) .h;, co jest zwyklym mnozeniem macierzy, gdy

rozpatrujemy E; = K.

Twierdzenie 13. Przy wprowadzonych oznaczeniach zal6zmy, ze f :  — F jest rozniczkowalne na
Q 6 topEq X ... x E,,. f jest klasy C! wtedy i tylko wtedy, gdy odwzorowania pochodne czastkowe
:Q2z — af - (z) € L(E;, F) sa ciagle.

Bx
Dowoéd. ( =) Mamy af -(a) = da fow;, wiec dla ¢; : L(EyW X...XEp,F) 2 L = Low; €
L(E;, F) mamy = ;o f', co jest ztozeniem odwzorowan ciaglych.

(<) Mamy d, f ZZ 1635 (a)op;, wiecdlavy; : L(E;,F)> L — Lop, € L(Ey X ...X Ep, F)

mamy =Y 1" ;0 &E , co jest zlozeniem odwzorowan ciaglych. O
Uwaga. Niech I' = Fy x ... x F,, i niech v; i ¢; bedg odpowiednio zanurzeniem i rzutowaniem
zwiagzanym z ta przestrzenia. Rozwazmy a € A C Ey X ... x E,, i odwzorowanie f = (f1,..., fn):

A — Fy x ... X F, rézniczkowalne w a. Mamy dobrze zdefiniowane 8% (a) € L(E;, F;). Jest

v Of; 0 .
dafj = Sy 2 (@) 0 pis skad do f = T7_yv5 0 da f; = Timtmv; © G () © pi. Moima to
j=1,....n

zinterpretowa¢ macierzowo

L@ .. Fh@] [m
dafh: : )
%(a) g%(a) -

co ponownie ma dokladny sens, gdy rozwazamy F; = I; = K.

Przykfad. Dla f : (0,400)* 3 (z,y) — (y x) € R? mamy

Ay f= [y 2] .
x2

Do tego Jac f (z,y) = detd,,, f = % — 3L =0.

<=
8-

Propozycja 12. Niech FEy, ..., E,, Fy,..., F,,,Gy,...,Gy beda przestrzeniami Banacha nad cialem
K. Niech u;, p;, v, qj oraz wg, ry beda odpowiednio zanurzeniami i rzutowaniami na produkt odpo-
wiednio przestrzeni E = [[;_, E;, F =[[J_, F; 1 G = 1. , G Niecch ACE,BCA, f:A—F,
f(A) € B,g: B — G. Oznaczmy 1 = go f. Ustalmy a € A, b = f(a). Zalozmy, ze f jest
rozniczkowalne w a, a g jest rozniczkowalne w b. Wtedy rézniczki czastkowe 1 dane sa wzorem

577k _ G i af]
3 _;a ? G
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Dowdd. 5 9
da f - Z Vj © 8£: (a’) O Pi, dbg = Z Wk © ézl: (b) 0 (s
i=1,...,n s=1,....,m
j=1,....m k=1,....¢
Zatem
0 ; 0 0
don= 3 weo G @enon o @on= 3 wogk @) @on
i=1,...,n i=1,...,n
j=1,....m j=1,....m
s=1,....m k=1,...,¢
k=1,...,0

Druga réwnos$¢ wynika z ¢; ov; = 0 dla s # j i ¢s o vs = 1. Zapiszmy n = (n1,...,7¢). Mamy

0 L) af;
T (@) = reodanon = > SR (7 @) 0 52 @)

Jj=1

Uwaga. Wzor d, n = df(q) g © dq f mozna interpretowaé macierzowo:

ony, _ _ | 9gs df;
[&ni (a)} k=1,..0 dan = [ayj (f (a))} k=1l {6;1 (a)} jzll,...,m'

i=1,...,n j=1,....m

7. Zamiana ciala przy rézniczkowaniu
2025-10-20
Definicja 11. Niech F, F' beda przestrzeniami Banachanad C,a € it ACACE#(0)if: A— F.

Odwzorowanie f jest K-rézniczkowalne w a, gdy istnieje odwzorowanie K-liniowe L € Lk (E, F)
If(@)=f(a)=L(z=a)ll _

llz—all

takie, ze lim,_.,

I Propozycja 13. L € Lg (E, F) jest C-liniowe wtedy i tylko wtedy, gdy L (iz) =iL (z) dlax € E .

Propozycja 14. Odwzorowanie f jest C-rozniczkowalne w a wtedy i tylko wtedy, gdy f jest R-
rézniczkowalne w a i rézniczka d¥ f jest C-liniowa.

Przyktad. f : C ~ R? > (2,y) — (z,0) € R? jest R-rozniczkowalne, ale nie C-rézniczkowalne.
Rzeczywiscie, f jest R-liniowe, wigc d(, ) f = f, ale obraz f to jedna o$ wspotrzednych, ktora nie
jest podprzestrzenia (zespolona) C, wiec f nie moze by¢ C-liniowe.

Przyktad. f : C ~ R? 5> (z,y) — (x2 +y2,2xy) € R? jest R-rézniczkowalne, mamy Ay f =
2¢ -2y
2y 2z

2 (z + iy) (hy + ihg), co jest C-liniowe, mamy d< f (w) = 2zw, wyjsciowe odwzorowanie to po prostu

fle) =2

] . Zatem d(q,y) f. (h1,h2) = (2zhy — 2yho, 2yhy 4 22hy) = 2 (xh1 — yho,yh1 +xhy) =

Przyktad. Niech f = u + iv bedzie funkcja z (C™, a) w C, ktora jest R-rézniczkowalna. Dla uprosz-
czenia przyjmujemy m = 1. Mamy C > z = z + iy oraz zdefiniowane wczesniej oznaczenie na
rzutowanie dz : C 3 z = x 4+ iy — = € R i analogicznie dy. W tej chwili dz = dz +idy oznacza
identycznoéé na C. Mamy d f = % (a)dzx +% (a)dy, a to jest C-liniowe dokladnie wtedy, gdy

d® f (i) = id% £ (1), czyli L (a) =L (a).

Podstawiajac definicje f dostajemy g—Z (a) + ig—’; (a) = i (%% (a) + ig—; (a)), co sprowadza sie do
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ukladu zwanego réwnaniami Cauchy’ego-Riemanna:

Uwaga. Zauwazmy, ze funkcja f (x,y) : R? — C daje sie zapisa¢ za pomoca zmiennej z = x + iy
=

oraz wzorow Eulera z = ZJZFZ ,y = 552 jako funkcja f (z,%). Wprowadzajac oznaczenie dz = dx —i dy

sprobujemy zapisa¢ dX f = adz +ﬁ dz przy pewnych a, 8 € C. Oznaczymy 3 8f =ai af = (. Takie
napisy nazywamy pochodnymi formalnymi.

a® f— gi( ) da — gz( Vidy = gi( )(dx—f—idy)—ig—z(a)(dx—l—idy)—%(a)idy—l—ig—g(a)dx
- S @ +ig! (@) (-idy) + gf< )da —zgi< ) (idy) =

(L @)at (L +iZ @) -2 @as +z%( )(idy) =

(- (o o)

Zatem

dff—;(gf(a)—igg( ))d tty (gi (a)ﬂaz(a))dz Y (@ az+9 (@) az.

Zauwazmy, ze %5( ) = 225 (a) <= %= (a) = 0 jest kolejnym warunkiem réwnowaznym C-
rozniczkowalnodcl.

Twierdzenie 14. Funkcja f = u + i : (C™,a) — C, ktora jest R-rézniczkowalna w a jest C-
rozniczkowalna w a, gdy zachodzi jeden z ponizszych (réwnowaznych) warunkow:

1. ngj(a)_la (a)dlaj=1,.

ou v
=—(a) = 5-(a
2. {%’g( )_ oy, (@) dlaj=1,...,m

aT,j(a = "oz, a)

3. ng =0dlaj=1,...,m

Dowéd. Wynika z powyzszych rozwazari. O

Uwaga. Jedli f : (C™,a) — C™ jest C-rozniczkowalna w a, to jest tez R-rozniczkowalna w a. Mamy
utozsamienie dS f € M, xm (C) oraz d¥ f € Ma,xam (R), a wige mozemy policzyé Jac® f (a) i

2
Jach( ). Okazuje sie, ze Jack f(a ’Jac I )‘

8. Twierdzenie o przyrostach
2025-10-23

Twierdzenie 15 (O przyrostach). Niech F' bedzie przestrzenia Banacha nad K, a < b w R, funkcje
f:la,b] = F oraz g : [a,b] — R beda ciadgle i istnieje taki zbior S C [a,b], ze |S| < Ngia,be S
oraz dla kazdego t € [a,b] \ S istnieja f} (¢),g) (t) i ||f ( )'H < ¢, (t). W takiej sytuacji zachodzi
1 (6) = f (@)l < g (b) —g(a).

Dowéd. Udowodnione na AM2. O

Uwaga. Powyzsze twierdzenie dziata tak samo, gdy pochodne prawostronne zastapimy lewostron-
nymi (wystarczy je zastosowaé do funkcji f (t) = —f (t)). Najczesciej stosujemy je w sytuacji, gdy
S ={a,b} i f,g sa rozniczkowalne w (a, b).
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Definicja 12. Odcinkiem (wektorowym) o koncach a,b € E (gdzie E jest przestrzenia wektorows
nad R) nazywamy zbior [a,b] = {a +¢(b—a):t € [0,1]}.

Definicja 13. Podzbior C' C FE, gdzie FE jest przestrzenia wektorowa nad R, nazywamy wypuklym,
gdy dla kazdych z,y € C mamy [z,y] C C.

Twierdzenie 16. Niech E, F' beda przestrzeniami Banacha nad K, Q € top £, niech f : Q — F
bedzie rozniczkowalna oraz [a,b] C Q. Jesli istnieje takie K > 0, ze dla kazdego z € [a,b] mamy
[da fIl < K, to |lf (b) = f (a)| < K [Ib— al.

Dowéd. Okreslamy f(t) = f(a+t(b—a)) oraz §(t) = K|b—alt dla t € [0,1]. Sa to funkcje
ciagle, maja pochodne prawostronne w [0, 1) a ponadto

Teza wynika z twierdzenia o przyrostach. O

7o) = | 57 @+ 10 )| < ldusaomsy S0 - all < K Jo = ol = 0.

Whiosek. Niech F, F' beda przestrzeniami Banacha nad K, Q C F otwarty i wypukly, f: Q — F
rozniczkowalna taka, ze ||d, f|] < K dla pewnego K > 0 i kazdego = € Q. Wtedy dla kazdego
a,b € Q mamy || (b) — f(a)|| < Kb - all.

Twierdzenie 17. Niech E, F' beda przestrzeniami Banacha nad K, D C E obszarem (zbior otwarty
i spojny). Niech f : D — F bedzie funkcja rozniczkowalna taka, ze d, f = 0 dla kazdego = € D.
Wtedy f = const.

Dowéd. Ustalmy pewne a € D i rozwazmy zbior D = {z € D : f (z) = f (a)}. Oczywiscie a € D.
Mamy D = f~! ({f (a)}), a funkcja rozniczkowalna jest ciagla, wiec D jest domkniety. Ustalmy
2o € D i wybierzmy r > 0 tak, by K (xg,7) € D (z otwartosci D). Kule sa wypukle, a wiec dla
kazdego © € K (wo,r) mamy ||f (z) — f(zo)|| < 0- [z — o, wiec f(z) = f(z0) = f(a), czyli
K (zg,r) C D. Zatem D jest niepusty, otwarty i domkniety, co wobec sp6jnosci D daje D = D. O

Twierdzenie 18. Niech F, F' beda przestrzeniami Banacha nad K, a € € top E, h € E bedzie
takie, ze [a,a + h] C Q oraz niech f: Q — F bedzie rézniczkowalna. Zachodzi

If(a+h)=f(a) =da f (W) < sup ||ds f —da fIl[|A]]-
z€[a,a+h]

Dowéd. Mozemy zalozy¢, ze supremum jest skoriczone (inaczej teza jest trywialna) i wynosi K. Na
Q rozwazamy funkcje f = f —d, f. Zachodzi

flat+h)=f(a)=fla+h)—daf(a+h)—f(a)+daf(a)=f(at+h)—f(a)—daf(R).

Mamy dwfz d; f—d, f, zatem ‘

d, ﬂ’ < K dla kazdego x € [a,a + h]. Nier6wnosé

|Fa+n -F@| <Klatr—al

koriczy dowdd. O

9. Ciagi i szeregi funkcji rézniczkowalnych

Twierdzenie 19. Niech E, F' beda przestrzeniami Banacha nad K, D C E zbiorem wypuklym i
ograniczonym. Niech f,, : D — F bedzie rézniczkowalna dla n € Ny oraz niech g : D — L (E, F)
bedzie taka, ze f/ = g oraz niech istnieje takie zg € D, ze (f, (aco))neNJr jest zbiezny. W takiej
sytuacji ( f”)n€N+ zbiega jednostajnie do pewnej funkcji rozniczkowalnej f : D — F takiej, ze

=g
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Dowdéd. Jest spetniony jednostajny warunek Cauchy’ego

v5>0 EINEN vm,nZN vxED ||dx fm - da: .fn” <eE.

D jest wypukty oraz (fi, — fn)' (z) = dy fm — du fn, wiec dla odpowiednio duzych m,n i a,z € D
mamy

[(fm = fn) (@) = (fm — fo) (@)]| < e llz —al|.
Stad wynika, ze dla kazdego x € D ciag (f, (x))neN+ jest Cauchy’ego:

1fm (@) = fn @) < € llz = @oll + [|(fm = fu) (o) || < €,

gdzie pierwsza nier6wnosé to skorzystanie z poprzedniej dla a = xg, a druga to ograniczonosé¢ D
i zbieznos¢ f, (xo). Przestrzenn F jest zupelna, wiec istnieje granica punktowa f = lim, e fn-
Przechodzac w powyzszej nieréwnosci z m do +oo dostajemy jednostajng zbieznosé. Do tego

I (a+h) = f(a) =g (a) bl < |(f = fn) (a+h) = (f = fu) (@) + | fn (@ + B) = frn (@) — g (a) .2
<ellrll +ellbll +11f7 (@) -2 — g (a) .l < 2]l +|.f7 (@) — g (@) [ 2]l < 3e IR,

gdzie pierwszy wyraz szacujemy przechodzac m — oo w ograniczeniu na przyrost f,, — f,, a drugi
szacujemy z rozniczkowalnosci f,, i zbieznosei f), = g. Dostajemy f’ = g, co konczy dowod. O

Twierdzenie 20. Niech E, F' bedg przestrzeniami Banacha nad K, D C E obszarem. Niech f, :
lok
D — F bedzie rozniczkowalna dla n € N oraz niech g : D — L (E, F) bedzie taka, ze f, = g

oraz niech istnieje takie zg € D, ze (f, (aco))neN+ jest zbiezny. W takiej sytuacji (f,) zbiega
lokalnie jednostajnie do pewnej funkcji rozniczkowalnej f : D — F, takiej, ze f' = g.

neNL

Dowéd. Oznaczmy D= {x eD:(f, (x))neNJr jest zbieZny}. Mamy z¢ € D.Dlaa€ D mozemy
wybra¢ r > 0 takie, ze K (a,7) C D oraz f, |k(a,r) jest zbiezne jednostajnie. Na tej kuli stosujemy
poprzednie twierdzenie (mozemy, bo w a mamy zbiezno$é punktowa), mamy K (a,r) C D.

Ustalmy ciag (a,) C D taki, ze a, — b. Dobieramy K (b,r) jak wczesniej, istnieje takie m, ze
an, € K (b,r) dlan > m. W a,, mamy zbieznos$¢ punktowa, wiec podobnie jak przedtem K (b,r) C
D. W szczegblnosci b € l~), wiec D jest domkniety, otwarty i niepusty. Z tego wynika D = D.
Roézniczkowalno$é f wynika z poprzedniego twierdzenia zastosowanego lokalnie. U

Twierdzenie 21. Niech E, F' beda przestrzeniami Banacha nad K, D C E obszarem. Niech f, :
D — F bedzie rozniczkowalne dla n € N, a szereg ZZO=1 /! lokalnie jednostajnie zbiezny oraz

niech istnieje xg € D takie, ze Y., fn (z0) jest zbiezny. W takiej sytuacji Y .-, fn jest lokalnie
jednostajnie zbiezny, jego suma jest funkcja rozniczkowalng oraz (3 -, f; n)l = i

Dowdéd. Stosujemy poprzednie twierdzenie do sum czastkowych. O
I Uwaga. To twierdzenie daje nam mozliwosé rézniczkowania szeregdéw potegowych wyraz po wyrazie.

Definicja 14. Funkcja f : D — K dla otwartego D C K™ jest K-analityczna, jesli lokalnie jest
suma zbieznego szeregu potegowego, czyli dla polidysku P (a,r) = {x €K™ : Vigm) |75 —aj| < r}
mamy, ze dla kazdego o € D istnieje takie r > 0, ze f (2) = >, cym Ca (& — 20)" W P (20,7), gdzie
b* = bt - ... - b%m a zbieznosé rozumiemy w sensie rodzin bezwzglednie sumowalnych.

Lemat 2 (Abel). Rozwazmy promiefi 7 = (r1,...,7n). Jesli dla pewnej rodziny (ca),enm € K oraz
pewnego C' > 0 mamy |co7¥| < C, to szereg potegowy > ym Ca (z — x0)” jest zbiezny lokalnie
jednostajnie na P (z0,7) = {z € K™ : Vjepm) |@; — moj| <75}
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Dowéd. Wezmy 6 € (0,1) oraz x € P (zo, 07). Mozna przeszacowaé (oznaczajac |a| = ag+...+ap,)

S w-w <3 T Calacz<m+k Yo

k=0 |a|=k k=0 |a|=k

co jest zbiezne. Zatem mamy zbieznosé¢ lokalnie jednostajna, bo dla kazdego x mozna dobraé 6 tak,
by x € P (xo, 0F). O

Whiosek. Jesli rzeczywisty szereg potegowy >, cnm Ca (T — x0)” jest lokalnie jednostajnie zbiezny
na polidysku rzeczywistym Pg (z¢, 1), to jest tez lokalnie jednostajnie zbiezny na Pg (zg,7).

Dowdd. Ustalmy a € P (zg,r). Wiemy, ze wyrazy szeregu zbiegaja do zera w pewnym otoczeniu
a, a wiec |co (x — 20)*| < C dla pewnego C' > 0. Przechodzac z = do granicy polidysku dostajemy

lear®| < C, a wiec z lematu szereg jest lokalnie jednostajnie zbiezny w otoczeniu a, a wiec réwniez
w Po (2g,7). O

Propozycja 15. Jesli szereg potegowy > oym Ca (€ — 20)” jest jednostajnie zbiezny na P (xq,7), to
szereg jego pochodnych Y- cym Doieq ®ica (2 — 20)" “* jest lokalnie jednostajnie zbiezny.

Dowdd. Jednostajna zbieznosé szeregu potegowego daje nam |c,r®| < C. Podobnie jak w lemacie
Abela dla 6 takiego, ze | — x| < Or mamy

Z Z Z%Ca (@ — 1) <CZ <m+k )0k17
k=0 |a|=k i=1

gdzie tym razem dodatkowo skorzystaliSmy z «; < k. Ten szereg jest jednostajnie zbiezny, co daje
teze. O

I Whiosek. Funkcje analityczne maja pochodne analityczne.

10. Pochodne czastkowe a ré6zniczkowalnosé

Twierdzenie 22 (O rézniczkowaniu w punkcie). Niech Ey, ..., E,,, F' beda przestrzeniami Banacha
nad K (m > 2), Q € topFy X ... X E,,, f:Q — F, a € Q. Zalézmy, ze istnieje otoczenie otwarte
a € Qy C Q takie, ze na )y funkcja f posiada ciggte pochodne czastkowe. W takiej sytuacji f jest
rozniczkowalna w a.

Dowéd. Kandydatem na rozniczke jest oczywiscie L = > 7 of (a) o pj. Przeliczamy

j=1 Oxz;
m
0
e _Zaf 7 = 5) = £ @) — f (01,22, ) — 85;() (@1 - )
8f m—1
+ fla1, 22, ..., Tm) — f(a1,02,23,. .., Tm) — E (a).(z2 —az) + Rji1(z
2
7=0
dlaR;i1(x)=f(a1,...,0;,Tj41,- -, Tm)—f(a1,..., 041, Tjq2,. .. ,xm)—aiil (@) . (zj41 — aj41)-
Z ciaglosci pochodnych czastkowych mamy ‘ I (z) — ij{r - (a)H < ¢ dla wszystkich j i = takich,
ze |z; — a;| < r dla pewnego r i wszystkich j. Ustahwszy punkt = (z1,...,2y) oznaczmy &, =
(Zj+2,...,Tm) 1 potraktujmy z;,; jako zmienny: Rﬁfi1 (zj41) == Rj41 (x), co zadaje nam funkcje
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z K (aj11,7) w F. Z twierdzenia o przyrostach mamy

|7 o) = | R @) - B agsn)]| € swp|ldy B3| hogan — asuall =
yEK (ajt+1,7)
of R of
sup B (a1, .-, a5,Y,541) — 0 — 3 (@[ 1zj4+1 — ajpall L ellwjpr — ajpall,
yGK(aj+1,r) x]+1 xj+1
zatem | f (z) — f (a) — L (z — a)|| < 3775, o [Rjz1 ()] < €300, o ll7j+1 — aj1]], koniec. O

Uwaga. Czasem poszukuje sie innych wersji tego twierdzenia, najczesciej przy stabszych zatozeniach.
Mozna pokaza¢ na przyklad, ze wystarczy nam istnienie jednej z rézniczek czastkowych w a oraz
ciaglosé pozostalych pochodnych czastkowych w otoczeniu a.

Twierdzenie 23. Niech Ei, ..., E,,, F beda przestrzeniami Banacha nad K (m > 2), 2 € top F; x
. X B, f:Q — F. Funkcja f jest klasy C! w Q wtedy i tylko wtedy, gdy wszystkie pochodne
czastkowe istnieja w € i sa ciagte.

Dowéd. ( = ) Juz dowodzilismy.

( <= ) Poprzednie twierdzenie daje nam rézniczkowalnosé f, a przy tym zalozeniu juz dowodzilismy.
O

11. Dyfeomorfizmy

Propozycja 16. Niech E, F' beda przestrzeniami Banacha nad K, a € A C E, b € B C F. Niech
f + A — B bedzie bijekcja taka, ze f (a) = boraz f jest roZniczkowalne wa,a f! jest rozniczkowalne
w b. W takiej sytuacji d, f € Isom (E, F) oraz dp f~1 = (do f) "

Dowéd. Mamy id =dp (fo f7') =da fody f7! i tak samo id = dy, f~! o d, f, co daje teze. O

Twierdzenie 24. Niech F, F' beda przestrzeniami Banacha nad K, a € int A C AC E, b€ int B C
B C F. Niech f : A — B bedzie bijekcja taka, ze f(a) = b oraz f jest rozniczkowalne w a,
a f~! jest ciggle w b. W takiej sytuacji f~' jest rézniczkowalne w b wtedy i tylko wtedy, gdy
d, f € Isom (E, F).

Dowéd. ( = ) Wynika z poprzedniego.

(<=)Mamy f(z)— f(a) =do f (x —a)+n(z) ||z — al|, gdzie n : A — F jest ciagla i zerowa w a.
<o

d, f jest izomorfizmem, wiec istnieje takie m > 0, ze ||d, f.h|| > m ||k, czyli H(da Nt

Ustalmy ¢ > 0. Z ciagtoéci no =1 w b mamy r > 0 takie, ze K (b,r) C B oraz dlay € K (b,r) jest
Hn () H < % min (1,em). Kladae 2 = f~' (y) mozemy przeliczy¢

I @) = £ @] 2 Ide (@ = @)l = In @Il — all = m |l ~ all = 5 |}z = all = 3 = —all,
gdzie pierwsze przejscie to odwrotna nieréwnosé trojkata. Mamy zatem
|1 @ - O -n™ w-b)|| =z @WnH™ . (F @ - F @) =
e )7 et @ = 0) = (7 @)~ F @D < = @ e —all < —-emZ |z~ all < ly 5]
O

Definicja 15. Niech E, F' beda przestrzeniami Banacha na K, U € top E, V € top F'. Odwzorowanie
f: U — V nazywamy dyfeomorfizmem, gdy jest bijekcja klasy C' o funkcji odwrotnej f~* klasy C*.
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Uwaga. Dyfeomorficznoéé implikuje homeomorficznosé, ale nawet homeomorfizm klasy C! nie musi
by¢ dyfeomorfizmem, np. f (z) = 23, ktérego odwrotnosé ¢/z nie jest rézniczkowalna w 0.

Izomorfizmy topologiczne sg dyfeomorfizmami. Ztozenia dyfeomorfizméw to dyfeomorfizmy.

Twierdzenie 25. Niech E, F' beda przestrzeniami Banacha nad K, U € top E, V € top F'. Niech

f : U — V bedzie homeomorfizmem klasy C'. f jest dyfeomorfizmem wtedy i tylko wtedy, gdy
d, f € Isom (E, F) dla kazdego x € U.

Dowéd. (=) f! jest rozniczkowalne w f (), wiec d,. f € Isom (E, F).

(<=) f~! jest rézniczkowalna w V, mamy d, f~! = (ds-1() f)_l, zatem (f_l)/ =noflofl
gdzie n : Isom (E,F) 2 ¢ — ¢! € Isom (F, E). Wszystkie sktadane funkcje sa ciagle, wiec mamy
teze. O

Uwaga (Przypomnienie). Twierdzenie Banacha o punkcie staltym: niech (X, d) bedzie zupelng prze-
strzenig metryczna, f : X — X kontrakcja (odwzorowaniem 6-lipschitzowskim dla 6 € [0,1)).
Istnieje dokladnie jeden punkt staty f.

W algebrze Banacha A dla ||af] <1 mamy 1 —a € G (A).

Twierdzenie 26 (O lokalnym dyfeomorfizmie). Niech E, F beda przestrzeniami Banacha nad K, niech
a € Q € topE. Ustalmy f : Q — F klasy C! takie, ze d, f € Isom (E, F). Istnieja otoczenia
ac€UCQi f(a) €V CF takie, ze f (U) =V oraz fly : U = V jest dyfeomorfizmem.

Dowdd. Niech g = (d, f)f1 of : Q — E. Jest to odwzorowanie klasy C'. Do tego d,g =
(dg f)71 od, f = idg. Jesli wskazemy otoczenia U > a, W > g(a) takie, ze ¢ (U) = W i g|y
jest dyfeomorfizmem, to otrzymamy dyfeomorfizm f|y =d, fog z U na d, f (W). Zatem to nam
wystarczy.

Wprowadzmy ¢ : Q > x — 2 — g(x) € E, ktore jest Ct. Mamy d, ¢ = idg — d, g = 0. Z ciaglosci
istnieje 7 > 0 takie, ze dla kazdego z € K (a,r) C Q mamy |[|d, ¢| < 1. Z twierdzenia o przyro-
stach mamy ¢ (z1) — ¢ (22)|| < 1 ||z1 — 22| dla 21,22 € K (a,7). Ponadto d, g = idg — d, ¢ jest
odwracalne w algebrze Banacha L (E, E), wiec d, g € Isom (E, E) dla kazdego = € K (a,r).

Pokazemy, ze dla kazdego y € K (g (a), g) istnieje doktadnie jeden x € K (a,r) taki, ze g (z) =y
Ustalmy y i rozwazmy réwnianie 0 = y — g (z), czyli = y + ¢ (z). Odwzorowanie h, : K (a,r) >
z — y+ ¢ (z) € E przyjmuje wartosci w K (a,r), bo ||hy () —a|| = |ly — g (a) + ¢ (z) — ¢ (a)]| <
ly —g (@] +ll¢ (@) —¢ (@l <5+ 3 llz—all <7

@ jest %—lipschitzowskie, z czego wynika, ze hy jest %—lipschitzowskie, zatem ma jedyny punkt staty
(bo kula domknieta jest zupetna). Jest nim z, = hy, (z,) € K (a,r), zatem g (z,) = y. Pokazali$my,
ze g jest bijekcja z U = K (a,7) Ng™' (K (g(a),%)) w K (g9(a),%). Do tego glu jest ciagle i ma
rozniczke bedaca izomorfizmem. Pozostaje sprawdzi¢ ciggtosé g|gl.

Dla @1,25 € U mamy |j¢ (1) — ¢ (z2)|| < 1 ||lz1 — 22. Z odwrotnej nieréwnosci trojkata mamy
lo (@1) = @ (@)l = [z = 22]l = llg (21) — g (z2)lll. Zatem 3 [lo1 — 22l < [lg (21) — g (z2)]], cayli
g|[;1 jest 2-lipschitzowskie, a wiec ciagle. Ostatecznie dostajemy, ze g|y jest dyfeomorfizmem. [

Uwaga. Powyzsze twierdzenie zachodzi dla dowolnej klasy C*, gdzie k € N U {oo, w}.

Twierdzenie 27. Niech F, F' bedg przestrzeniami Banacha nad K, Q € top E, f : Q@ — F bedzie
klasy C!. Nastepujace warunki sa réwnowazne:

1. f(Q) etopFif:Q— f(Q) jest dyfeomorfizmem.
2. f jest iniekcja oraz V,cq d, f € Isom (E, F).
Dowéd. ( = ) Wynika z poprzednich.

( <) Z twierdzenia o lokalnym dyfeomorfizmie dla kazdego a € ) istnieja otoczenia a € U, C 2,
f(a) € V, C F takie, ze f|y, : Uy — Vg jest dyfeomorfizmem. Wtedy V, C f (), skad f () jest
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otwarty, a z iniektywnosci f mamy poprawnie okreslone f=1: f(Q) — €, ktore jest lokalnie klasy
C', skad mamy teze. O

Uwaga. Dla £ = F = K" warunek d, f € Isom (K", K") jest rownowazny Jac f (z) # 0. W
szczegdlnodei dla n = 1 oznacza to f’ (z) # 0, co nad R na podstawie twierdzenia Rolle’a daje nam
iniektywnosé. Nie dziala to jednak nad C, bo np. exp () jest klasy C! i ma niezerowa pochodna,
ale jest okresowy.

Uwaga (Hipoteza Kellera, hipoteza jakobianowa). Niech F = (Fi,...,F,,) : K™ — K™ bedzie od-
wzorowaniem wielomianowym (F; jest wielomianem) takim, ze Jac F' # 0. Wtedy spodziewamy sie,
ze F' jest iniekcja.

Dla K = C tatwo pokazaé¢ bijektywnos¢ z iniektywnosci, dla K = R réwniez zostalo to pokazane.
Dla m = 1 hipoteza jest udowodniona, dla m > 1 1 K = C problem jest otwarty, a dla K = R
podano kontrprzyktad dla m = 2.

Dla K = C teza jest réwnowazna pokazaniu, ze F' jest wlasciwe, czyli przeciwobraz zbioru zwartego
jest zwarty. Rownowaznie: lim ;o0 | F (2)]| = +o0.

W przypadku zespolonym F~1 tez jest wielomianowe (jesli istnieje). Ponadto Jac F' € C [x1, ..., Z.],
zatem jesli ten wielomian nie ma pierwiastkéw, to musi by¢ staly.

12. Funkcje uwiklane

Twierdzenie 28 (O funkcji uwiktanej). Niech F, F, G beda przestrzeniami Banacha nad K. Niech
Q € top (E x F) oraz niech f: Q3 (z,y) — f (z,y) € G bedzie klasy C'. Ustalmy (a,b) € f~1(0).
Zaktadamy, ze % (a,b) € Isom (F, G). W takiej sytuacji istnieja otoczenia a € U C E, b€V C F
oraz odwzorowanie g : U — V klasy C! takie, ze U x V. C Q oraz (z,y) € U x VN f71(0) <
y=g(x) (to znaczy U x V N f~1(0) jest wykresem g).

Dowéd. Niech @ (z,y) = (z, f (v,y)) bedzie okreslone na 2. Mamy ® (a,b) = (a,0) oraz d(g) ® =
(pE,d(a,b) f) Jegli dla (B, k') € E x G chcemy znalezé (h, k) € E x F takie, ze

-y 0 0
(W, k") =dp) @ (h, k) = (h,ai(a,b) .h+a‘§(a,b).k>,

2025-10-30

|
tomusibyé h=h'1k = (% (a, b)) (k’ — % (a,b) .h), zatem d, )  jest liniowa i ciggta bijekcja,
a wiec izomorfizmem topologicznym (stosujemy tu twierdzenie Banacha).

Z twierdzenia o lokalnym dyfeomorfizmie mamy otoczenia (a,b) € U C Qi (a,0) € V C ExG takie,

ze O U — V jest dyfeomorfizmem. Rozwazmy § = (<I>|5)_1. Musi byé g (z,2) = (x,¢1 (x, 2)),
gdzie g jest klasy C!.

Niech W = {a: € E:(x,0)¢€ ‘7} 5 a. Ten zbior jest otwarty, bo jest przeciwobrazem V w zanurzeniu

z F do E x G. Wybieramy takie otoczenia a € WCWibeVC F, ze WxVCU.Z ciaglosci g;
mozemy wybraé takie otoczenie a € U C W, ze g1 (U x {0}) C V.

Dla (z,y) € U x V mamy rownowaznosé g (z,0) =y < ®(x,y) = (2,0) < f(x,y) = 0.
Zatem g = g1 (+,0) |y jest funkcja zadana w tezie. O

Uwaga. W przypadku E = K™, FF = G = K" zalozenie to istnienie takiego odwzorowania f :
m n n g Bfl

(K™ x K", (a,b)) — K", ze det [ax"wL’j:l,__”n

(rownie dobrze mozna wybraé¢ dowolna inng wartosé). Przy zalozeniu istnienia jednego rozwiazania

(szczegodlnie ustawionego wzgledem ,0si” y) dostajemy istnienie innych rozwiagzan, ktorych zbior ma

tadna strukture.

# 0. Badamy zbior rozwiazan rownania f (z,y) = 0
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Przyktad. Rozwazmy funkcje f (v,y) = 22 + y? — 1, poziomica f (a,b) = 0 to okrag jednostkowy.
Liczymy V£ (a,b) = [2a,2b], co nie réwna si¢ 0 na catym f~!(0), wiec w dowolnym punkcie pozio-
micy mozna zastosowaé twierdzenie o funkcji uwiktanej. W (a,b) = (1,0) mozemy popatrze¢ tylko
na wykres z (y), w (a,b) = (0,1) tylko na y (z), a w pozostalych punktach mamy oba wykresy x (y)

iy(z).

Uwaga. Mozliwosci odwiktania zmiennych i przedstawienia poziomicy jako wykresu ,determinuje”
przeciwdziedzina — dla f (7,y,2) : R® — R? mozemy liczyé¢ na przedstawienie poziomicy jako
wykresu funkeji (y (2)., = (2)) lub ( (y) .= () Wb (2 (=), y (2)).

Przyktad. Funkcja f (z,y) = (y — g (z))° z g : (R,0) = (R,0) klasy C! nie spelnia zalozeri twier-
dzenia o funkcji uwiktanej w (0,0), chociaz f~! (0) jest wykresem g.

Uwaga. Dowdd twierdzenia o funkcji uwiklanej pozwala uzyskaé g tej samej klasy, co f i to nawet w
przypadku analitycznym: bez zmian dowodu mamy twierdzenie nad C i powolujemy sie na twierdze-
nie, ze C-analitycznos¢ to C-rozniczkowalnosé. Nad R wykorzystujac lemat Abela pokazujemy, ze
funkcja R-analityczna f na obszarze (2 C R™ przedtuza si¢ jednoznacznie do funkcji C-analitycznej f
na otwartym Q C C" takim, ze QNR" = Q. Wobec zwiazku miedzy d¥ f i dC f mozemy zastosowaé
twierdzenie o funkcji uwikltanej dla f .

Uwaga. Zbiér f~!(0) moze byé¢ doéé dowolny nawet dla funkcji klasy C*°. Istnieje twierdzenie
Whitney’a moéwigce, ze dla dowolnego zbioru domknietego A C R™ istnieje funkcja f : R® — R
klasy C* taka, ze f~1(0) = A.

Uwaga. Twierdzenie o funkcji uwiklanej uzyskaliSmy z twierdzenia o lokalnym dyfeomorfizmie.
7 twierdzenia o funkcji uwiklanej mozna wywnioskowaé¢ twierdzenie o lokalnym dyfeomorfizmie:
wezmy f : Q0 — F, gdzie Q € topE i f jest klasy C* oraz a € ) takie, ze d, f € Isom (E, F).
Rozwazmy h (z,y) = y — f(x) okreslona na Q x F, ktorej zbior zer jest wykresem f. Do tego
% (a,f(a)) = —du f, co jest izomorfizmem. Zatem mamy funkcje g : V. — U (gdzie U,V to
odpowiednie otoczenia) taka, ze g = (f\U)f1 i g jest odpowiedniej klasy, co daje nam teze.

Twierdzenie 29. Niech E, F, G beda przestrzeniami Banacha nad K. Niech € top (E x F) oraz

niech f : Q > (z,y) — f(x,y) € G bedzie klasy C'. Ustalmy (a,b) € f~!(0). Zakladamy, ze

8—5 (a,b) € Isom (F, G). W takiej sytuacji istnieja otoczenia a € U C E, b € V C F oraz odwzoro-

wanie g : U — V klasy C! takie, ze U x V C Q oraz (z,y) € UxVNf~1(0) — y=g(x), do tego
=i

rozniczka funkcji g dla dowolnego « € U dana jest wzorem d, g = — (%5 (x,9 (x))) o % (x,g(z)),

w szczegolnosci %5 (x,9g (x)) jest izomorfizmem.

Dowdd. Z twierdzenia o funkeji uwiktanej mamy istnienie funkcji g. Niech T : U 5 ¢ — f (z,¢g (x)) €
G.Mamy T =0, czyli T’ = 0. Do tego T = f o (idy, g), wiec
. 0 0
0= 0, T = diagon £ © (s, dog) = |5 (2.9 @) 0z + 5 (09(@)) om0 (s, ds )

:%(m,g(m))+%(mag(m))odw9 = dwgz—(gjyc(x’g(x)))_ 81'( 9 (@)

Pozostaje pokazaé, ze a L faktycznie mozemy odwrécié. Na pewno mamy a (a b) € Isom (F, G), ale

ten zbidr jest otwarty, co wobec ciaglosci 85 daje nam, ze istnieja takie otoczenia a € U C U oraz
beVCV,ze L (U X V) C Isom (F, G). Zatem teza zachodzi na U x V, a mozna zaciesni¢ U i V
do U iV bez straty pozadanych wlasnosci g. O

Przyktad. Rozwazmy f = (f1,...,fm) : R” 2 Q — R™, gdzie Q € topR", f(a) = 0im < n.

12. Funkcje uwiklane Strona 20/49



Analiza Matematyczna 3 Maciej Mikotajczak

Badamy uktad rownan f; (x1,...,2,) = 0. Zalézmy, ze macierz [gi; (a)} i—1._ . Ma po ewentu-
Jj=1,...,n
alnej permutacji zmiennych minor gléwny det {gg . (a)} # 0. W takiej sytuacji rézniczka
J 3,j=1,....,m

czastkowa ﬁ (a) € LR™,R™) jest izomorfizmem i w otoczeniu punktu a zbiér rozwia-

zan rozwazanego ukladu rownan jest wykresem funkcji (x1,...,2m) = g (Tma1, .-, %n), czyli jest
powierzchnia m-wymiarows.

Przyktad. Twierdzenie o funkcji uwiktanej daje mozliwo$¢ badania przebiegu zmiennosci funk-
cji uwiklanej. Rozwazmy réwnanie 3y° + y (x2 4F 1) = 4z. Punkt (0,0) jest rozwiazaniem. Roz-
wazmy f (z,y) = 3y° +y (2 + 1) — 4. Mamy g—?’; (z,y) = 15y* + (22 +1) > 0, czyli wzgledem y
mamy funkcje silnie rosnaca. Jest to wielomian stopnia nieparzystego wzgledem y, a wiec rownanie
f (zo,y) = 0 ma dokladnie jedno rozwiazanie y (xo) dla kazdego x¢, a nieparzyste stopnie przy y im-
plikuja f (—z,—y (z)) = —f (z,y (x)), czyli y (—z) = —y (z). Twierdzenie o funkcji uwiktanej daje
nam klas¢ C' tej funkeji, mozemy policzy¢ & (3y (2)° +y (2) (z2+1) - 4:10) = 15y (:E)4y' (z) +

Y (z) (z? +1) + y () 2z — 4 = 0. Mozemy przeksztalci¢ y' (z) (15y (z)* + 22+ 1) =4 — 22y (z),
wiec ¢y (z) = 0 < zy(r) = 2. Mamy 0 = f (z,y (x))y(x), co przy xy (xr) = 2 przeksztalca
sie do 3t3 +t—4 = 0dlat = y(z)°, czego jedynym rozwigzaniem jest ¢ = 1. Ostatecznie po-
chodna y (z) zeruje sie dla y (x) = %1, czyli przy x = +2. To daje nam ekstrema funkcji y (z), a
y(x) = W — 0 daje nam zachowanie funkcji w granicy.

Przyktad. Mozemy stosowaé twierdzenie o funkcji uwiklanej do badania pierwiastkow wielomia-
néw. Niech X = {(a1,...,am,t) €K™ xK:p(a,t) =t™ 4+ a;t™ ' +...+ay, =0}. W punktach
(aop,to) € X takich, ze % (ao,to) # 0 kietek funkeji (X, (ag, o)) jest wykresem ¢ = ¢ (a) funkcji
klasy C', czyli pierwiastki sa zalezne od wspotczynnikéw w sposéb zadany przez funkcje klasy C*.

13. Ro6zniczki wyzszych rzedéw
2025-11-06
Definicja 16. Izometria nazywamy takie odwzorowanie ¢ : (X,d) — (Y, p), ktore zachowuje odle-

glosé: p(p(x),¢(2')) = d(z,2"). W szczegdlnosdci izometria zawsze jest iniekcja 1-lipschitzowska.

Jesli istnieje surjektywna izometria ¢ : X — Y, to méwimy, ze te przestrzenie s izometryczne.

Uwaga. Ograniczymy sie dalej do przestrzeni unormowanych E, F' oraz izometrii liniowych ¢ : E —
F, czyli takich, ze ||¢ (z)|| = ||z]|.

Twierdzenie 30 (Mazur, Ulam). Izomorfizm izometryczny przestrzeni unormowanych nad R jest
afiniczny, czyli © — ¢ (z) — ¢ (0) jest liniowe.

Przykfad. Rozwazmy surjektywng izometrie liniowa [ : E — F', gdzie F, F' sg przestrzeniami unor-
mowanymi nad K. Skoro I € L(E,F), to mozemy obliczy¢ jej norme ||I||. Dla E = {0} mamy

|I|| = 0. W przeciwnym wypadku wobec ||Iz| = ||z|| mamy ||I|| < 1. Podobnie dla funkcji 7—*
many 171/ L. Fonadto o] = |1~ 1e]| < 1| i, wic mamy
1
T bl < el < el

skad [|772 17]] > 1, ezyli [|I-1]| = [17]] = 1.

Lemat 3. Niech E, F' beda przestrzeniami unormowanymi nad K. Niech I : E — F bedzie izomor-
fizmem topologicznym takim, ze ||I|| < 1 oraz HI‘1H < 1. W takiej sytuacji I jest izometria.

Dowéd. Mamy ||Iz| < |[I||||z]| < ||z|| oraz ||| = |[I-*Iz| < ||[I7}|| 12| < |Iz||. Zatem ||z| =
ITz||, a wiec I jest izometria. O
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Propozycja 17. Niech F' bedzie przestrzenig unormowana nad K, m > 1. Odwzorowania
I:L,KF)>sf—=f(,...,1)€F,

J:Fov— K" (z1,...,%m) 2 21... 20V € F) € L, (K, F)
sa wzajemnie odwrotnymi izometriami liniowymi. Zatem £, (K, F) ~ F.
Dowdd. J (v) jest m-liniowe na skoniczenie wymiarowej przestrzeni K™, wiec jest ciagte. Widac, ze

I|J ()] < v, wiec ||J|| < 1. Ponadto dla f € L, (K, F) mamy || f (1,...,1)|| < |Ifll, stad |]] < 1.
To daje nam teze. O

Propozycja 18. Niech F1, Es, Fy, F> beda przestrzeniami unormowanymi nad K, ® : £y — Fs i
U : F} — Fy izometriami liniowymi. Odwzorowanie I : £L(E1,F1) > f - VYo fod € L(Fy, Fy) i
jego odwzorowanie odwrotne J (g) = ¥~! o g o ® s3 izometriami.

Dowéd. Oczywiscie I i J sa liniowe. Mamy || (f)| < |[¥] || f]] H<I>_1H < |If|l, wiec I jest ciagle oraz
[II]] < 1. Podobnie dla J, wiec mamy teze. O

Propozycja 19. Niech Fj, ..., E,,, F beda przestrzeniami unormowanymi nad K (m > 2). Odwzo-
rowanie I : L (E1,L(Es,...,Eyn; F)) — L(Ey,...,Ey; F) dane wzorem

I(f)=(F1 X ...XEpn> (x1,..y&m) = f(21) . (2,...,2m) € F)

jest izomorfizmem izometrycznym.

Dowod. |[f (z1) - (22, xm) | < [If (z0)l[ 22l - - llemll < [|fI 22l 2]l - [lzm]. Z tego mamy
]| <1 oraz widzimy, ze I (f) faktycznie jest ciagte.

Odwrotne do I jest J(g) = (E12z1 = g(z1,+-..,-) € L(Es,...,E,; F)) Liniowos¢ jest oczy-
wista, ciagtos¢ wynikowego odwzorowania dostajemy tak samo jak przedtem: ||g (z1,...,zm)|| <
gl llzall- .- zmll, skad |lg (1, .-, ) < llgll @], co daje tez [[J]| < 1.

Propozycja 20. Niech Fy, ..., E,,, F beda przestrzeniami unormowanymi nad K (m > 2). Odzwo-
rowanie

I: ,C(El,ﬁ(EQ,,C(E;g,,,C(Em,F)))) — ,C(El,...,Em;F)
zadane przez I (f) (x1,...,%m) = (... ((f (1) .x2) .23)...) .y € F jest izomorfizmem izometrycz-
nym.
Dowdéd. Juz wiemy, ze £ (Ep—1,L (Em, F)) ~ L(En_1, Em; F) oraz, ze mozemy zamieniaé¢ dzie-
dziny i przeciwdziedziny na izomeryczne, zachowujac izomorfizm przestrzeni odwzorowari liniowych
miedzy nimi. Indukcyjnie dostajemy teze. O

Uwaga. Rozniczki wyzszych rzedéw w naturalny sposob sa odwzorowaniami wieloliniowymi. Roz-
wazmy rozniczkowalne f : U — F. Dostajemy f' : U — L (E,F). Jesli to odwzorowanie jest roz-
niczkowalne, to dostajemy odwzorowanie pochodne f” = (f')' : U — L(E,L(E,F)) ~ Lo (E; F).
Ponadto w przypadku odwzorowan wieloliniowych na K™ mamy identyfikacje z elementami F' (co
pokrywa sie z teoria wprowadzona nad ciatem). Do tego wiemy, ze wszystkie rozwazane przestrzenie
sa Banacha, wiec mozemy bez obaw stosowaé¢ cala wprowadzong teorie.

Definicja 17. Niech E, F' beda przestrzeniami Banacha nad K, ACFE, f: A— F, a € A. Niech:
1L A(O) :Aa f(o) :fa
2. A = {m e A : fO) rozniczkowalna w m} Cint A, f1) = (f(o))l AN 5 L(E,F)

w

. A= {z € AW : fO) rozmiczkowalna w z} Cint A ) = (f(l))/ :A@ 5 L(E,L(E,F))

n. A™ = {a: e A=1 : f(n=1) yo7niczkowalna w x} C int A1, () = (f("’l))/ : A
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L(E,L(E,...,L(E,F)))

Dostajemy ciag zbiorow (byé moze pustych od pewnego momentu) takich, ze A = A©® D int A®) D
AN D . Wprowadzone odwzorowania f(™ sa takie, ze kazde jest odwzorowaniem pochodnym
poprzedniego (lub odwzorowaniem pustym, gdy poprzednie nie jest rozniczkowalne).

Definicja 18. Niech n € N,. Jesli a € A", to mowimy, ze f jest n-krotnie rozniczkowalne w a,
natomiast wartos¢ f(™ (a) =: d? f nazywamy n-ta rézniczka (Frécheta) lub pochodna f w a. Od-
wzorowanie f(™ : A — £ (E;F) (po odpowiedniej identyfikacji) zwiemy n-tym odwzorowaniem
pochodnym.

Notacja. Az do n = 3 stosujemy klasyczny zapis f/ := f), " .= f@) " .= f3),

Definicja 19. Jeslin > 11 A™ = A, to mowimy, ze f : A — F jest n-krotnie rézniczkowalna.
Definicja 20. Odwzorowanie f jest klasy C", gdy A™ = A oraz f") : A — L, (E; F) jest ciagte.
Uwaga. Klasa C° oznacza ciaglos¢ f. Oczywiscie klasa C™ implikuje klase C* dla k < n.

Definicja 21. Odwzorowanie f jest klasy C™, jesli jest klasy C™ dla kazdego n € N,.

Uwaga. Jesli f: A — F jest takie, ze f = L|a, a L: E — F jest afiniczne, to f jest klasy C>.

Uwaga. Zalézmy, ze f : A — F jest n-krotnie r6zniczkowalne w a € A. Mamy utozsamienie d} f =
f™(a) € L(E,L(E,...L(E,F))) ~ L, (E; F). Wymiennie piszemy wicc f(™ (a) (h1,...,hn) =
(.. ((f™ (a) .h1) .h2) .h3...) .hy, gdzie hq,..h, € E. Dodatkowo jesli E = K, to wiemy, ze
L, (K, F) ~ F, czyli mozemy pisa¢ (™ (a) € F.

Uwaga. Jesli f : A — F jest dwukrotnie rozniczkowalne w a, to nie dosé, ze a € int A, ale wobec
a € A® mamy otoczenie a € U C A takie, ze Voey 3 f' (2).

Definicja 22. Jesli dla kazdego h € E odwzorowanie fo, : K>t — f(a+th) € F jest n-krotnie

rozniczkowalne w t = 0 oraz istnieje symetryczne L € L, (E; F) takie, ze d;{‘,ﬁ"‘ (0) = L(h,...,h)
(symetrycznosé oznacza niezmienniczo$é na permutacje argumentow), to méwimy, ze f ma w a n-ta

rozniczke Gateaux. Oznaczamy L = 6] f.

Definicja 23. Niech Ej,...,E,,, F' beda przestrzeniami Banacha nad K (m > 2). Ustalmy A C
Ey X ...X Ep, f:A— F.Niech A = A. Dzialamy indukcyjnie:

Dla i; € {1,...,m} niech

(1) _ . 9f of 4 of A
Al {xeA : 3 . (ac)}, o tA ST — o (z) € L(E;,, F).

Dla iz € {1,...,m} niech

@ _ w.q 90 (0of
A =feead 3 2 (2)@),

82f tA® 5o 0 <$>(:ﬂ)€ﬁ(Ei27£(Equ))~

0r;,0r;, = "2 ox;
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Dla i, € {1,...,m} niech

0 of
A dpe A3

"f w5, 0 ( on—1f >($)€£(Ein7C(Ein17”' L(E;,F))).

8xin 600 8581'1 T 8:1:in 8xin71 600 8561'1

Definicja 24. Jedli a € AZ(.?) to Mar‘if (a) nazywamy n-tg rozniczka (pochodna) czastkows

P in--0Tiq
f w a wzgledem (po) z;,,...,2;,, gdzie n > 1, 41,...,i, € {1,..,m}. Liczbe n nazywamy rzedem
pochodnej czastkowej. Ponadto jesli ¢, = 1,1 = =41 = 1, to stosujemy zapis ax n (B, F).
Uwaga. Czesto dla wygody odwraca sie kolejnos¢ indeksowania, to znaczy piszac 830!18'7{)%" mamy

na mysli rézniczkowanie kolejno po z;,,...,z; .

Twierdzenie 31. Niech F, ..., E,,, F beda przestrzeniami Banacha nad K (m > 2). Niech £ = F; x

. X Ep, A C Einiech f: A — F bedzie n-krotnie rézniczkowalna w punkcie a. Odwzorowanie f

posiada wszystkie pochodne czastkowe rzedu n w punkcie a. Do tego po naturalnych utozsamieniach
zachodza wzory

o"f o _ _

m(a)— Mfo(ugy X .o Xu,),

a’n
dz f = Z ax“...fa ln( a)o (piy X ... X pi, ).

il gooogsp =1L

Dowéd. Zauwazmy, ze drugi wzor implikuje pierwszy, bo tylko ztozenie rzutowania (p;; X ... X p;)
7z zanurzeniem (u;, X ... X u;, ), gdzie indeksy sie zgadzaja, nie ma ani jednej wspolrzednej zerowej
(a ta automatycznie zerowataby odpowiedni sktadnik sumy).

Drugiego wzoru dowodzimy indukcyjnie. Baze juz mamy. W kroku indukcyjnym z zalozenia in-

n—1

dukcyjnego mamy otoczenie a € U C A, w ktorym istnieja ﬁ oraz dla kazdego x € U
Tiy - Oiy,

mamy
m an—lf
drtf = Tiy,iin o 57— | »
7= 3 (Taieogrd—)
12 yeenyin =1 "
gdzie Ty, . 4, : L(Eiy, L(Eyy, ..., L(E;, ,F))) = L(E,...,L(E,F)) dane jest wzorem

(o (o () ) DY) 0 = (L ((0nD) 5D) ) ALY,

a wiec jest liniowe i ciagle. W zwiazku z tym mozemy zrézniczkowaé i otrzymaé

d f Z 127 win O <M) B

27~~-ﬂn*1

e anflf
_ o f o f
- Z Tiy,.. ,Mom(a)oph— Z Tiscsin 8%1.”8%(@)-

i1,e.0yin=1 01 yeensin =1

O

Twierdzenie 32. Niech Fi,..., E,,, F beda przestrzeniami Banacha nad K (m > 2), niech 2 €
topE1 X ... X E,, f:Q — F. Funkcja f jest klasy C™ w € wtedy i tylko wtedy, gdy wszystkie jej
pochodne czastkowe rzedu n istnieja i sa ciagle w €.

Dowdd. ( = ) Wiemy juz, Ze istnieja, a z ich postaci wynika ciaglosc.
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( <) Zastosujemy indukcje po n. Dla n = 1 teze juz mamy. Niech g deme pochodna czastkowsg,
rzedu n — 1 funkcji f. Z zalozenia g ma w Q ciaglte pochodne czqstkowe 8— 7 tego wynika, ze

g jest klasy C* w Q. W szczegdlnodci g jest ciagla i f jest klasy C"~! (na podstawie zalozenia

indukeyjnego). Ze wzoru f"~V (z) = 37 ) MLZ«;JI () o (piy X ... %X p;,) widzimy, ze
..... n—1=1 Bx;, ...0%p_
F=1) jest klasy C!, co ostatecznie daje klase C" funkcji f. O

Uwaga. Wezmy FE1, ..., E,,, F bedace przestrzeniami Banacha nad K i funkcje f : A — F dwu-
krotnie rézniczkowalna w a € A C Fy X ... X E,,,. Wtedy

m

Z 8:EJ (i ) Z ( 8:@8:6] l) i

i,j=

a to odpowiada ,mnozeniu macierzy”:

2 i
o°f
ki...kn]- :
& ] [axiaxj a)} ij=1,...,m ’
J=1,.., h
Jesli By = ... = E,, =K, to macierz [8‘93; (a)} ma wspotczynniki z F' 1 mnozenie polega
J i,j=1,.

na mnozeniu elementéw F' przez skalary. Dodatkowo dla F = K mamy do czynienia ze zwyklym
mnozeniem macierzy. Macierz te nazywamy macierza Hessego, a jej wyznacznik to hesjan.

14. Symetria rézniczek
2025-11-07

Twierdzenie 33 (Schwarz). Niech E, F beda przestrzeniami Banacha nad K, a € A C F i niech
f : A — F bedzie dwukrotnie rézniczkowalne w a. Wtedy d2 f € Ly (E; F) jest odwzorowaniem
symetrycznym, czyli d2 f (h, k) = d2 f (k, h).

Dowéd. Znajdujemy takie r > 0, ze K (a,7) C A i dla kazdego « € K (a,r) istnieje d, f. Dla
(u,v) € K (0,7) x K (0,7) definiujemy

H (u,v) = f(a+u+v) = fa+u) — f(a+o)+ f(a) —d f (u,v).
Wiemy, ze f’ jest rozniczkowalna w a, wiec mamy K (a,20) C K (a,r) takie, ze dla x € K (a, 20) jest

f (z) = f (a) = f" (a).(x —a)|| < 5 ||z — al. Ustalmy u € K (0,9) i oznaczmy g, (v) = H (u,v).
Jest to funkcja rézniczkowalna w dowolnym v € K (0, ). Mamy

9o (0) = f'(a+u+v) = f (a+v) = d] fu,
zatem

|gh (v) £d2 fo £ f' (a)|| <
||f (a+U+v)ff (@) = f"(a). (w+ )| + If (a+v) = £ (a) — " (a) v|| <
IIu +vll + 5 ||v|| < e ([Jull +[Jv])-

Niech h (v) = e (|lu]| + [|v]]). Dla = tv przy ¢ € [0,1] mamy h (z) = & (JJul| + ¢ ||v]]) < h(v). Zatem
llgs, (@)|| < h(z) < h(v), czyli z twierdzenia o przyrostach

2
IH (u, )| = llgu (v) = gu (O] < R () vl < & (fJull + [l0])”-
Ostatecznie dla € > 0 znalezlismy 6 > 0 takie, ze jesli ||u], [Jv|| < 4, to

|2 f- (u,v) = & £ (v,0)|| = | H (v,0) = H (u,0)]| < 2¢ ([|ull + [[0])*.
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Teraz dla h, k € E\{0} wriqwszy u = 3 i Lg ey | iy (02 £ () — &2 1.6 )| <

b
2e62, czyli ||d2 f. (h, k) — d2 f. (k,h)|| < 8]R|l ||k

E
e = €', co koriczy dowod. O

Twierdzenie 34. Niech F, F' beda przestrzeniami Banacha nad K, a € A C E, niech f: A — F
bedzie n-krotnie rézniczkowalna. Rézniczka d! f jest symetryczna, to znaczy dla kazdej permutacji
o € S, mamy d? f (ho(1),- - b)) =42 f (b1, ..., hy) dla dowolnych hq, ..., h, € E.

Dowdéd. Dowodzimy indukcyjnie, dla n = 2 juz mamy. Ustalamy n > 3. Wystarczy pokazaé¢ krok
indukcyjny dla o bedacego transpozycja sasiednich elementow.

Jesli o (1) = 1, to niech g : A®V 5 2 — d? 1 f(hy,...,h,) —d?™ 1f( A& o< 0 hg(n)), gdzie
hi,...,h, € E sana wstepie ustalone. Na podstawie zaloienia 1ndukchnego g= 0 wiec dg g.hy = 0.
Oznaczajac b’ = (ha,...,h,) wprowadzamy g = vy o f=1 gdzie vj,, oznacza ewaluacje na h’,
ktora jest liniowa. Zatem dg § = vp odg f*~Y = vy, od? f. Analoglcznle dla A" (hg(g), ey hg(n))
wprowadzamy Go = vy o f*~D mamy do gz = vpr 0 d? f. Jest g = § — Ga, czyli 0 = dg g.hy =
do g-h1 — da ga.hy = (A7 f.he) . (ha,... hy) — (A7 f.he) . (hU(Q), .. .,hg(n)) = A2 f(h1,...,hpn) —
az f (hg(l), .. .,hg(n)).

Jesli o (1) =2,to 0(2) = 1io (i) =i dlai>2 Wtedy f("2 jest dwukrotnie rézniczkowalna w
a, wiec d2 f("=2) jest symetryczna. Ale d2 f("=2) = d” f, czyli (d? f.hy).hy = (d? f.hy) .hi, zatem
obkladajac pozostalymi argumentami dostajemy pozadana réwnosé dla o. O

Twierdzenie 35. Niech A C K™ dla m > 2, niech F' bedzie przestrzeniag Banacha nad K. Wezmy f :
A — F, ktora jest n-krotnie rozniczkowalna w a € A. Wybierzmy 41,...,4, € {1,...,m} io € S,.

Po identyfikacji rézniczek czastkowych z elementami F mamy 5 a"gm (a) = 5 a"][;z. (a).
in ir1) 9% (n)
Dowdéd. Mamy % (a) =d? f (eiy,...,ei,) 1 stosujemy twierdzenie o symetrii rozniczki. O
i1+ OTip

Przyktad. Niech f (z,y) = zy. Wtedy

o’ f 2°f (a
@2 £ (), (1, k) = [P o] [g’%; (@) o )] M—[hl ho] [0 1] [’“]—hlmhgkl.

ko

T (a) oy? (a)

Uwaga. Symetria pochodnych czastkowych jest warunkiem koniecznym roézniczkowalnosci odpo-
wiedniego rzedu.

Notacja. Gdy wiemy, ze pochodne czastkowe nie zaleza od kolejnosci indeksow mozemy zapisaé

o f o f o f glel f
Dz Or. (a) = (@) = 5ar an, \a) = o )
iy ... 0T, (0x1...0x1) ... (0%, ... Oxy,) ozt ... 0xy Ox
gdzie v = (a1, ..., ) € N jest wielowskaznikiem diugosci n = |a = a1 + ... + au,. Pojawiaja
sie tez oznaczenia %‘Iaf (a) = D*f (a) = 0%f (a). Jesli dodatkowo polozymy a! = ay!- ...  an!, to

wszystkich permutacji dajacych te sama pochodna czastkowa w a jest Z—:

15. Wlasnosci odwzorowan wielokrotnie rézniczkowalnych 20251113

Uwaga. Przypomnijmy, ze odwzorowania afiniczne zacie$nione do zbioru otwartego sa klasy C* i
maja zerowe pochodne stopnia wickszego niz 1.

Odwzorowanie dwuliniowe f € £ (E, I'; G) jest klasy C*°, bo mamy d, ) f (h, k) = f (z,k)+f (h,y),
czyli f' jest liniowe (na E x F), czyli f”/ = f’ (odwzorowanie stale, zawsze rowne f') 1 f" =

Jesli A jest przemienng algebra Banacha z jedynka, to exp : A — A jest klasy C*° i mamy
eXp (hl,...,hn) :exp(a) .hl 'hg.
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Propozycja 21. Niech E, F, G beda przestrzeniami Banachanad K, a € A C E oraz niech f : A —» F
bedzie n-krotnie rézniczkowalna w a (klasy C™) [klasy C*°]. Wtedy dla L € L (F,G) odwzorowanie
Lo f jest n-krotnie rézniczkowalne (klasy C™) [klasy C*°].

Dowéd. Dla n = 1 twierdzenie jest znane. Pokazemy krok indukcyjny dla n > 2. f/ jest (n — 1)-
krotnie rézniczkowalne w a, wiec ¢ o f’ jest (n — 1)-krotnie rozniczkowalne, gdzie ¢ : L(E, F) 3
¢ - Lol € L(E,G). Teraz (¢o f')(z) = Lo f'(z) = dy (Lo f), co oznacza, ze (Lo f)" jest
(n — 1)-krotnie rézniczkowalne. To daje nam teze w pierwszej wersji. Pozostatych wersji dowodzimy
identycznie. To daje nam odpowiednie wlasnosci. O

Twierdzenie 36. Niech F, Fy, ..., F,, beda przestrzeniami Banacha nad K, a € A C E. Niech f; :
A — F; bedzie n-krotnie rézniczkowalne w a (klasy C™) [klasy C*°]. Odwzorowanie f = (f1,..., fm)
jest n-krotnie rézniczkowalne (klasy C™) [klasy C].

Dowéd. Mamy f' =¢o (ff,..., f],), gdzie

¢: [[L(E.F)> (... bm) = (b1, b)) € L(E,Fy x ... x Fp).
i=1

Teze dla n = 1 mamy, pokazujemy krok indukeyjny dla n > 1. (f,..., f},) ma odpowiednig
wlasno$é, natomiast ¢ jest klasy C°°, wiec zalozenie jest spetnione dla f' = ¢ o (f1,..., fL.). O

Twierdzenie 37. Niech F, F, G beda przestrzeniami Banacha nad K, a € ACFE, f: A— B C F,
g : B = G. Oznaczmy b = f(a). Jesli f jest n-krotnie rézniczkowalne w a, a g jest n-krotnie
rozniczkowalne w b, to g o f jest m-krotnie rézniczkowalne w a (odpowiednio mamy klase C™ lub
C™).

Dowéd. Ponownie indukcja, dla n = 1 wynik jest znany. Mamy (go f) = ¢ o (¢’ o f, f'), gdzie
¢: L(F,G)x L(E,F) >3 (u,v) > uov € L(E,G) jest dwuliniowe, wiec klasy C>. O

Uwaga. Korzystajac z twierdzenia o ztozeniach mozemy dowodzi¢ dalszych rezultatéow tego typu,
np. dla iloczynu kartezjanskiego.

Twierdzenie 38. Niech A bedzie algebra Banacha z jedynka nad K. Odwzorowanie £ : G (A) >z —
z71 € G (A) jest klasy C*°.

Dowéd. Wiemy, ze d,&.h = —x7 - h-271 i ¢ = ¢o(=£€), gdzie ¢ : A x A > (z,y) —
(Ash—ahyeA) e LA A). ¢ jest dwuliniowe, wiec klasy C>°.

Wiemy, ze ¢ jest klasy C!, wiec & jest klasy C!, czyli € jest klasy C2. Mozemy powtorzyé ten
argument dowolnie wiele razy. O

Twierdzenie 39. Niech F, F beda takimi przestrzeniami Banacha nad K, ze Isom (E, F') # (). Roz-
wazmy 7 : Isom (E, F) > f — f~! € Isom (F, E). n jest klasy C*.

Dowéd. Ustalmy ¢ € Isom (F, F) i oznaczmy ¢, : L(E,F) > L — Loy € L(F,F) oraz ¢* :
L(F,F)>L— poL € L(F,E). Oba te odwzorowania sa klasy C*. Mamy 1 = ¢* 0£ 0 ¢, |1som(E,F),
co jest ztozeniem odwzorowan klasy C*.

Definicja 25. Niech E, F' bedg przestrzeniami Banachanad K, U € top E,V €top F.Dla f : U =V
ik € Ny U{co} méwimy, ze f jest Ck-dyfeomorfizmem, jesli jest bijekcja klasy C*, ktérej odwrotnosé
rowniez jest klasy C*.

I Uwaga. Zwykty dyfeomorfizm jest C!-dyfeomorfizmem.

I Twierdzenie 40. Niech f bedzie dyfeomorfizmem klasy C*. Wtedy f jest CF-dyfeomorfizmem.

Dowsd. Niech g = f~1. Mamy dy g = (d(,) f) - Stad wynika ¢’ = 50 f' o g, zatem jesli f jest
klasy C2, to ¢’ jest klasy C', czyli g jest klasy C2. Mozemy powtérzyé ten argument dowolnie wiele
razy (az do C). O

15. Wtasnosci odwzorowan wielokrotnie rézniczkowalnych Strona 27/49



Analiza Matematyczna 3 Maciej Mikotajczak

Twierdzenie 41. Niech E, F beda przestrzeniami Banacha nad K, niech a € Q € topE i k €
N, U {occ}. Ustalmy f : Q — F klasy C* takie, ze d, f € Isom (E, F). Istnieja otoczenia a € U C
i f(a) €V C F takie, ze f (U) =V oraz f|y : U = V jest C*-dyfeomorfizmem.

Dowéd. Z twierdzenia o lokalnym dyfeomorfizmie wiemy, ze f|y jest dyfeomorfizmem klasy C* dla
pewnego otoczenia U. Zatem f|y; jest Ck-dyfeomorfizmem. O

Twierdzenie 42. Niech F, F, G beda przestrzeniami Banacha nad K. Niech € € top (E x F') oraz
niech f : Q > (z,y) = f (=, y) e G bedzie klasy C* dla ustalonego k¥ € N, U {oo}. Ustalmy
(a,b) € f~1(0). Zakladamy, ze SL (a b) € Isom (F,G). W takiej sytuacji istnieja otoczenia a €
UCE beV C F oraz odwzorowanle g : U — V Kklasy CF takie, ze U x V C Q oraz (r,y) €
UxVNf10) < y=g(x) (toznaczy U x VN f~1(0) jest wykresem g).

Dowéd. Powtarzamy dowod twierdzenia o funkcji uwiktanej, pojawia sie w nim dyfeomorfizm klasy
C*, wiec jest to CF-dyfeomorfizm. Druga wspohrzedna jego odwrotnosci jest klasy C*, a to jest
wlasnie g. O

I Uwaga. Oba powyzsze twierdzenia zachodza tez dla C¥.

16. Wzoér Taylora

2025-11-14

Notacja. Dla ¢ € Ly (E; F) piszemy . (h)* := ¢ (h,...,h).
—_——
k razy

Definicja 26. Niech E, F' beda przestrzeniami Banacha nad K, a € A C E. Dla funkcji f: A — F,
ktora jest n-krotnie rézniczkowalna w a n-tym wielomianem Taylora f w punkcie a nazywamy

my=3 2 @) ()"

k=0

Notacja. Dalej ustalamy U € top R, przestrzen Banacha F' nad K i funkcje v : U — F', ktora jest
n-krotnie rézniczkowalna. Bedziemy rozwazaé¢ funkcje

1—t 1—t)?
<p:U9t—>v(t)+Tv'(t)+%

=" 0 4y e R

1
)+ 4 "

Lemat 4. Niech v bedzie (n + 1)-krotnie rézniczkowalna w U. Wtedy ¢ (t) = %v("“) (t) dla
kazdego t € U.

Dowdd.

O

Lemat 5. Niech v bedzie (n + 1)-krotnie rozniczkowalna w U. Niech [0,1] C U i niech M > 0 bedzie
takie, ze dla kazdego t € [0, 1] mamy |[o™+1) (¢)|| < M. Wtedy |l¢ (1) — ¢ (0)]| < n+1)'

Dowdd. Niech g : U 5t — fM% € R. Na [0,1] mamy ¢’ (t) = - f)n, zatem z zalozenia
I () = =22 o) (1) < o (1) 2 tego wynika [l (1) — ¢ (0)]] < < )—g(0) = 2. O
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Lemat 6. Niech v bedzie klasy C"*1 i niech [0,1] C U. Wtedy ¢ (1) — ¢ (0) = fol %v(”“) (t)dt.

Dowéd. Wiemy juz, ze ¢ jest funkcja pierwotng, funkeji catkowanej. Teza zachodzi z definicji catki
0ZNaczonej. O

Uwaga. Jesli E, F' s przestrzeniami Banacha nad K, a € Q C E, h € E i [a,a+ h] C Q oraz
funkcja f : Q — F jest k-krotnie rézniczkowalna, to dla v (t) = f(a+ th) zdefiniowanego na
U={teR:a+theQ} mamy d;v.1 = d,y4p f-h € F, zatem mozna utozsamié¢ v’ (t) = dgyep f-h.
Rézniczkujac wielokrotnie dostaniemy v®) () = f®) (a + th) . (h)F.

Twierdzenie 43 (O wielomianie Taylora z reszta Lagrange'a). Niech rozwazana funkcja f bedzie
(n + 1)-krotnie rozniczkowalna w € oraz niech M > 0 bedzie takie, ze Hf("“) (z)|]| < M dla

@ € [a,a -+ hl. Weedy || (a+h) — T2 (W) < o2 1B+

Dowéd. Funkcja v (t) = f (a + th) jest (n + 1)-krotnie rézniczkowalna w U. Mamy

o0 @ = [ £ @+ 0y | < (|40 (@ em)|| A < b

n+1
zatem ||f (a+h) = T2 f ()| = llp (1) — ¢ (0)]] < XLl O

Twierdzenie 44 (O wielomianie Taylora z reszta catkowa). Niech rozwazana funkcja f bedzie klasy
Cl w Q. Wtedy f (a+h) =T"f (h) + fol (1:;) fnt1) (a+th). (h)n-H dt.

Dowéd. Mamy f(a+h) —T0f(h) = ¢ (1) —¢(0) = ! %v("“) (t)dt, a to jest rowne temu,
co trzeba. O]

Twierdzenie 45 (O wielomianie Taylora z reszta Peany). Niech a € Q € topE i niech f : Q —» F
bedzie n-krotnie rézniczkowalna w a. Wtedy f (a +h) =T"f (k) + o (||h|") przy h — 0.

Dowdéd. Przeprowadzimy indukcje po n. W bazie dla n = 1 dostajemy definicje roézniczkowalnosei:
fla+h)=f(a)+d, f(h)+o(||h]). Pokazemy krok indukcyjny dla n > 2.

Rozwazmy funkcje R: (2 —a) > h — f(a+h)—T2f (h). Mamy R (0) = 0 i mozemy zrézniczkowac
R, bo z n > 2 mamy, ze f da sie chociaz raz zrozniczkowa¢ w pewnym otoczeniu a. Zauwazmy, ze
sktadniki sumowane w T f (h) sa postaci F, = f®) (a)o 8y, gdzie 8, (h) = (h)* = (h,...,h). Mamy

— = — k
dp Fr.h = dgye f®) (a) 0 6p. o = d gy f®) (a). (R)” =

k

(k) 7 =k (E D (L g

S B a).(hy. s B h) =k (f) (h)** .,
1=1 i

gdzie trzecie przej$cie to rézniczka odwzorowania k-liniowego, a ostatnie to skorzystanie z symetrii

pochodnych. Zatem

R(B)=f(a+h)— (@) — = 2(f) (W) — ...~ = 0 ()" @),

2! n!
czyli z zalozenia indukcyjnego R’ (h) = o (||h||n_1) Znaczy to, ze dla ¢ > 0 i odpowiedniego

§ > 0 mamy |[h]| < & = ||R(h)| < e|h|”". Zatem z twierdzenia o przyrostach mamy
IR M) = IR (B) — RO < & [I" |11l co koricay dowod. 0

Uwaga. W przypadku F = K™ chcielibySmy wyrazi¢ wielomian Taylora za pomoca pochodnych
czastkowych, ktore utozsamiajg sie z elementami F. Dla h = (hq, ..., hy;) € K™ mamy

m k
FB @) (n)*= > L(a)hhu..'hik =Y gD“f(a).ho‘,

833‘1'1 .« 6],‘% aen™
|| =k

01,0t =1
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gdzie czynnik % jest liczba permutacji indekséw dajacych ta sama pochodna. Zatem
1 a a n
flat+h) =" P f (@)% +o (|l

aeN™
lal<n

17. Wielomiany jednorodne i symetryczne 2025.12.04

Definicja 27. Niech V,W beda przestrzeniami wektorowymi nad K. Funkcja ¢ : V. — W jest
wielomianem jednorodnym stopnia k& € N, gdy dla £ = 0 mamy ¢ = const, a dla k& > 1 istnieje
k-liniowe ® : V¥ — W takie, ze oAy = ¢, gdzie A : V 3> 2 — (z,...,2) € VF. Ogolt wielomianow
jednorodnych stopnia k oznaczamy Qg (V, W).

Uwaga. Qi (V, W) jest przestrzenia wektorowa, dla ¢ € Qp (V,W) mamy ¢ (A\z) = My (z) dla
AeKixeVoraz ¢ (0) =0 przy k > 0.

Przyktad. Funkcja ¢ : K 3> x — ax* € K pochodzi od ® : K¥ 3 (z1,...,2,) = azy - ... 2 € K.
Funkcja ¢ (z,y) = 2%y € Qs (K2,K) nie pochodzi od ® (z,y,2) = zyz, bo szukamy 3-liniowej

funkcji @ : (K2)3 — K, odpowiednia jest na przyktad @ ((x1,y1), (z2,y2),(23,¥y3)) = T1T2y1-
Gdybysmy zadali symetrii ®, to istnieje dokladnie jedna taka funkcja, w tym wypadku jest nig
P = 3 (2122y3 + T1Y223 + Y1 7223).

Ogolnie dla V =K™ i o (z) = az¥ ... zkm pray k= ki + ... + k,, dziata

k1 ) k1+ko ) kit...+km
@ (a®,.a®)=a [[«f [ «82... [I a4
ji=1 ja=k1+1 Jm=kit+...+km—-1+1

Notacja. Wprowadzamy nastepujace oznaczenia:
Hom (V,W)={L:V — W | L liniowe},
Homy (V,W) = {®: V¥ - W | ® k-liniowe},
Hom”™ (V,W) = {® € Homy (V, W) | ® symetryczne},
Ay, : Homy (V,W) > ® — ®o Ay, € Qp (V,W).

Lemat 7 (Uogdlnione twierdzenie Cramera). Dla A € M (K) takiej, ze det A # 0 rozwazamy
krotke wektorow v € VF ~ My, (K) taka, ze Av =0 € VF. Wtedy v = 0.

Dowdd. Niech p € V* bedzie pewnym funkcjonatem liniowym i niech g = p x ... x u. Wtedy
| ——

k razy
e
Aji(v) = i (Av) = 0. Ustalmy v = (vy,...,v%) oraz A = | © | przy a® € K*. Zachodzi Av =
20
(ah),v)
. , gdzie <a(i),v> = Z?Zl ag-i)vj € V. To daje nam p(<a(i),v>) = Z§:1 ay)/z(vj) =
(@, v)
(a1 (v)
(a®, [ (v)), czyli i (Av) = : = Aj (v).

(a®, f(v))

Do ukladu réwnan Afi(v) = 0 w K*¥ mozna stosowaé¢ klasyczne twierdzenie Cramera — jedynym
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rozwiazaniem jest i (v) = 0 € K¥, czyli p(v1) = ... = p(vg) = 0. Zauwazmy, ze ta réownosé
zachodzi dla dowolnego funkcjonatu p € V*. Z tego wynika v; = ... = v = 0. O
Uwaga. Dla t4,...,t; € K macierza Vandermonda nazywamy macierz

1oty ... it

1 oty ... tht

1oty ... th?

Jej wyznacznik, czasem zwany vandermondianem, wynosi [ [ <i<i<k (t; —ti).

Twierdzenie 46. Niech V, W beda przestrzeniami wektorowymi nad K, ¢ € Q. (V,W) dlak > 1. W
takiej sytuacji istnieje dokladnie jedno ® € Hom)"™ (V, W) takie, ze ® o A = ¢. Inaczej moéwiac,
Ak |Homsy™ (v,w) Jest izomorfizmem na Q (V, W).

Dowéd. Dla ¢ € S, niech 7, (v1,...,05) = (Vo(1),- - -, Uo(k)) - RozZWazmy symetryzacje zadang przez

s : Homy (V,W) 3@ = 4> g @ oy € Hom™ (V,W). Mamy 7, 0 Ay = Ay, wiec

1 k!
s(P)o Ay = 7 Z Pom, o0\, = H(I’OAI@ =do A,
g€Sk
Zatem jesli ¢ = @' o Ay, to ¢ = s (D)o Ay i s(P') € Hom”™ (V, W) jest odpowiednim odwzorowa-
niem. Pozostalo wykazac jego jedynosé. W tym celu wystarczy pokazac, ze jesli @ € Hom”™ (V, W)
i®PoAL=0,to®=0.

Dla k = 1 jest to oczywiste. Dla k = 2 wezmy ® € Homy'™ (V, W) takie, ze ® (z,x) = 0 dla kazdego
x€e€V. Wtedy dla z,y € V jest 0 =@ (x +y,z +y) = 2P (z,y). Zatem D (x,y) = 0.

Pokazemy krok indukeyjny dla k+-1. Ustalmy ® € Hom}"} (V, W) takie, ze oAy, 1 = 0. Wystarczy
pokazaé, ze @ (z,...,z,y) = 0 dla kazdych z,y, bo przy ustalonym y dostajemy odwzorowanie k-

liniowe, ktore jest zerowe z indukcji. Z dowolnosci y dostaniemy ® = 0. Dla u,v € V mamy

asyg |
Oz@(u—l—v,...,u—i—v):Z( ) )q)(u,...,u, Vyoony V).
iz i —_—— ——

j razy  k+1—j razy

Dla u = z, v = ¢y daje nam to

k+1 E+1 kE+1
0:( + )@(m,éy,...ly)—&—( * )@(x,x,ﬁy,...,ﬁy)—f—...—i—( + )@(m,...m,éy):

1 2 k
k+1 E+1\ ._ kE+1
< | )Ekq)(x,y,...,y)+ ( 5 )Ek Yo (z,z,y,...,y) +... .+ ( k )K@(x,...,x,y).
Ten napis mozna potraktowaé jak réwnanie z niewiadomymi zp41—; = (k‘;l)CI) (T,...,2,Y,...,Y).
Dla /¢ przyjmujacego wartosci 1, ...,k dostajemy uklad réwnan liniowych zadany macierzg,
11 ... 1
2 22 ... 2k
A =
E kK2 ... Kk
Po wydzieleniu kolejnych wierszy przez 1,2, ..., k dostajemy macierz Vandermonda. Zatem det A =
k' Tl <i<j<i (J — @) # 0. Z uogdlnionego twierdzenia Cramera jedyne rozwiazanie to z1 = ...z, = 0.
W szczegolnosci 0 = 2z = (kz1)<1> (z,...,z,y), co daje teze. O
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Propozycja 22 (Wzér polaryzacyjny). Dla ¢ € Qi (V, W) odwzorowanie ® € Hom;”™ (V, W) takie,
ze ¢ = ® o Ay, jest zadane przez

D (vy,...,0) = — Z (—D)F ) o (eu 4L+ k) -
€1,..,6,€{0,1}

Dowdéd. Od razu wida¢, ze ® jest symetryczne. Pozostaje pokazaé ¢ = ® o A. Mamy

®(v,...,v) = — Z (—D)FEFFe) e+ .+ ep) =
’ €1,..,e,€{0,1}

k
D S O R G D I i (T

“e1,.,er€{0,1}

Pozostaje pokazaé, ze Z?:o (—1)k_i (]:) i* = k!. Zauwazmy, ze k! jest liczba bijekcji (a wigc surjekcji)
miedzy {1,...,k} a {1,...,k}. Oznaczmy przez A; zbior takich funkeji {1,...,k} — {1,...,k},
ktore nie przyjmuja wartosci . Mamy

k k
K=k — A== Y 4, n..n4 =
=1 r=1 1<i1<...<i-<k
k k k—1 k k k
k_ 1 r+1 _ k _ E_ 1 k—i+1 k _ 1 k—1 k
ké() p) BT =R =D (D H;” L)

Definicja 28. Niech V, W bedg przestrzeniami wektorowymi nad K, a k € N. Odwzorowanie ¢ : V —
W nazywamy wielomianem stopnia nie wiekszego niz k, gdy istnieja ¢; € Q; (V,W) dlai=0,...,k
takie, ze o = o + ... + @i. Jesli g # 0, to k nazywamy stopniem ¢ i oznaczamy deg p. Ogot
wielomian6w stopnia co najwyzej k oznaczamy Py (V, W). Oznaczamy P (V,W) = Ur—, Pr (V. W).

Uwaga. ¢ = 0 jest dowolnego stopnia, a Py (V, W) jest przestrzenia wektorowa nad K.
Latwo sprawdzi¢, ze dla V =K™, W = K mamy P, (V,W) =Ky, [z1,...,Zm].

Propozycja 23. Dla przestrzeni unormowanych F i F' nad K wielomian ¢ = pg+... ¢ € Py (E, F)
jest ciagly wtedy i tylko wtedy, gdy kazde ¢; € Q; (V, W) jest ciagte, co jest rownowazne temu, ze
kazde odwzorowanie ®; € Hom*™ (E, F) jest ciagle, to znaczy ®; € L™ (E, F)).
Dowdéd. Ciaglosé kazdego p; oczywiscie implikuje cigglosé ¢. Dla dowodu w druga strong zauwazmy,
zedla¢=1,...,k1iustalonego x € E réownania postaci ¢ (fx) = Zf:o lip; (x) tworza uklad réwnan
liniowych o zmiennych ; (z). Macierz tego uktadu to macierz Vandermonda, a wiec jest odwracalna
i istnieje rozwiazanie ¢; (z) = Zfzo a;; (jz). Zatem ¢; jest kombinacja liniowa funkeji ciagtych.
Ciaglos¢ ®; oczywiscie implikuje ciaglo$é ¢;, natomiast wzor polaryzacyjny daje druga implikacje.
O

Definicja 29. Niech F, F' beda przestrzeniami Banachanad K,a € A C E, f: A — F. O wielomianie
¢ € P, (E, F) mowimy, ze jest rozktadem skoriczonym rzedu k funkcji f w punkcie a, jesli f (a + z) =

v(@)+o (||x||k) (przy x — 0).

Uwaga. f jest ciagta w a wtedy i tylko wtedy, gdy istnieje rozktad skoiiczony f rzedu 0 w a.
f jest rozniczkowalna w a wtedy i tylko wtedy, gdy istnieje rozklad skoriczony ciaglty f rzedu 1 w a.

Propozycja 24. Zat6zmy, ze f ma rozklad skoriczony rzedu k w a. Rozklad ten jest wyznaczony
jednoznacznie.
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Dowdd. Niech ¢, 9 € Py (E, F) beda odpowiednimi rozkladami. Rozwazmy p = ¢ — 1 € Py (E, F).
Oczywiscie p (z) = o (||a:|\k> w zerze. Jesli p # 0, to w postaci p = po+. ..+ py istnieje ¢ € {0,...,k}
takie, ze p; # 0. Wybierzmy minimalne 4o spelniajace te wlasnosé i niech v € E '\ {0} bedzie takie,
ze pi, (v) # 0. Mamy (o) s () przy ¢ — 0. Zachodzi to réwniez dla wykltadnikéw j < k, bo

[

[tv]? > ||tv]|* dla odpowiednio malego t. W szczegdlnosci

p(tv) _ pig () + .+ pi(tv) _ t°piy (v) +... + 7ok (v) _

[tw]|" [tw]]" tio JJv|"
5 o thio 5
piy (v) + + pk(v)%po(z)#o
[l o]
To daje sprzecznosé i konczy dowdd. O

Uwaga. Jedli f jest n-krotnie rézniczkowalne w a, to d¥ f € £¥™ (E, F). Zatem we wzorze Taylora
sumujemy wielomiany jednorodne i ciagte h — d¥ f. (h)k Zatem T2 f € P, (E, F) i jest klasy C*.
Twierdzenie o wielomianie Taylora z resztg Peany mowi, ze f ma rozklad skoriczony rzedu n, ktory
jest ciagly i jest on wyznaczony jednoznacznie.

Przyktad. Niech f (z,y) = 1 + 22 + 2%y + 27 + y?2. Chcemy znalezé wzor Taylora z reszta Peany w
zerze rzedu 5. Nasza funkcja juz jest wielomianem, zatem wystarczy usunaé z niej jednomiany za

duzego stopnia i ¢ (z,y) = 1 + 22 + 23y, natomiast 27 + 3%z = o (H(x, y)\|5>

Uwaga. Znajac wielomian Taylora mozemy zastosowa¢ wzér polaryzacyjny do kolejnych wielomia-
noéow jednorodnych w tym rozktadzie skoriczonym, odzyskujac w ten sposob rozniczki (w zerze).

Uwaga. Dla Q € Qy (E, F) mamy warunek rownowazny ciaglosci postaci ||Q ()| < const ||z|" i
wtedy Q (z) = o (||z||") dla p < k.

18. Szeregi Taylora

Definicja 30. Jesli E, F' sa przestrzeniami Banacha nad K, a € ACFE, f: A — Fi fmawa
rozniczki wszystkich rzedéw, to rozwazamy szereg funkeyjny T, f (h) = Yo | 4 d% f (h)".

Dla E = R™ i F = R rozwazamy funkcje f : (R™,0) — R klasy C* i tworzymy szereg formalny
lel
Ri[z1,. -, Zm]] 2 Tof = D qenm i% (0) z.

Twierdzenie 47 (Borel). Odwzorowanie C** (R™) € f — Tof € R[[z1,...,%m]] jest epimorfizmem,
to znaczy dla dowolnie wybranych (cq),cym € R zawsze znajdziemy funkcje f klasy C* taka, ze
ool ¢

5a (0) = ca.

Uwaga. Nad C takie twierdzenie nie zachodzi. Istotnie, juz sama C-rézniczkowalno$é wymusza
analitycznosé, co oznacza zbiezno$é Ty f 1 ogranicza to, jaki to moze by¢ szereg.

1 a\alf

=521 (0) 2% i zgodnie z twierdzeniem o wielomianie
al Oz

Uwaga. Sumy czastkowe Ty f to T f = Z|a|§k
Taylora mamy f (z) = T§ f (z) + o (Hx”k) Sam szereg Ty f moze by¢:

1. zbiezny w otoczeniu zera do f — wtedy f jest K-analityczna w zerze.

1
— R
c v € RA{0} wychodzi Ty f = 0.

2. zbiezny w otoczeniu zera, ale nie do f, np. dla f (z) = {O 0
Tr =

3. rozbiezny, to znaczy promien zbieznosci wynosi 0.
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Uwaga. Odnotujmy, ze zbieiny szereg potegowy S (z) = > cym o (2 —a)® jest funkejg klasy C*

la| . . glol ! _
L2925 (a). Wynika to z tego, ze %2 (z) = PRFION ﬁag (z—a)’™

zbiezny w tym samym polidysku, co wyjsciowy szereg.

oraz ao =

i ten szereg jest

19. Ekstrema funkcji
2025-12-05

Definicja 31. Niech (X, 7) bedzie przestrzenia topologiczna, f : X — R i a € X. Mowimy, ze f
ma w a minimum (maksimum) lokalne, gdy istnieje takie otoczenie U > a, ze dla kazdego x € U
zachodzi f (z) > f(a) (f () < f(a)). Ekstremum (minimum lub maksimum) jest silne, jesli poza
T = a nierd6wnos¢ jest ostra.

Definicja 32. Dla przestrzeni Banacha F nad R, k € N i formy jednorodnej ¢ € Q (E,R) méwimy,
ze @ jest:

e nieujemna, gdy ¢ (h) > 0dla h € E.
niedodatnia, gdy ¢ (h) <0dla h € E.
dodatnia, gdy ¢ (h) > 0 dla h € E\ {0}.
ujemna, gdy ¢ (h) <0dla h € E\ {0}.

dodatnio okreslona (koercywna), gdy istnicje takie ¢ > 0, ze ¢ (k) > ¢||h||* dla h € E.

e ujemnie okreslona, gdy istnicje takie ¢ > 0, ze ¢ (k) < —c||h||" dla h € E.

Uwaga. Mamy dodatnio okreslona = dodatnia = nieujemna oraz ujemnie okreslona =—
ujemna — niedodatnia.

Mamy ¢ (h) = @ (h, ..., h) dla pewnego ® € Hom)"™ (E,R), a zatem jesli k jest nieparzyste oraz ¢
spelnia ktorykolwiek warunek, to z ¢ (—h) = (—=1)* ® (h,...,h) = —p (h) wynika ¢ = 0, a warunki
inne niz nieujemno$¢ i niedodatnio$¢ nie maja sensu.

Przy dim F < oo dodatnia okreslonosé jest rownowazna dodatniosci, a ujemna okreslonosé¢ ujem-
nosci. Wiemy bowiem, ze domknieta kula jednostkowa jest zwarta i odwzorowania wieloliniowe sa
ciagle, a wiec ¢ jest ciagle i przyjmuje na sferze jednostkowej minimum A. Zatem dodatnio$¢ ¢
implikuje A > 0idla h € F\ {0} mamy A < ¢ (”—Z”) = ng (h). Analogicznie dla ujemnosci.

Propozycja 25 (Warunek konieczny ekstremum). Niech E bedzie przestrzenia Banacha nad R, a €
A C Foraz f: A— R. Zalézmy, ze f jest rozniczkowalna w a i ma w a ekstremum lokalne. Wtedy
d, f=0.

Dowéd. a € int A, wiec ma sens g, (t) = f (a + tv) dla |t| < 11 przy dowolnie ustalonym v € E\{0}.
Jesli f ma ekstremum lokalne w a, to g, ma ekstremum lokalne w 0, a ze g, jest funkcja jednej
zmiennej, to g, (0) =01id, fv=0. O

Uwaga. Dalej bedziemy stosowaé twierdzenie o wielomianie Taylora z reszta Peany z reszta zapisy-
wana jako 1 (h) ||h]|" z funkcja n: A —a — R ciaglta w 0 i taka, ze 7 (0) = 0.

Wiemy juz, ze dla ® € Hom”™ (E,R) mamy ® =0 <= PoA, =0.

Propozycja 26. Jesli f : A — R jest n-krotnie rézniczkowalna w a (n > 2), ma w ¢ minimum
(maksimum) lokalne, a ponadto d* f =0dlak=1,...,n—1id? f 0, tod? foA, jest nieujemna
(niedodatnia), a ponadto n jest parzyste.

Dowéd. Zal6zmy nie wprost, ze istnieje takie h € E, ze d7 f.(h)" < 0. Wtedy h # 0. Funkcja
g (t) = f (a + th) ma minimum lokalne w 0. Ponadto dla ¢ > 0

9(8) = £ (@) b £ (6" + m (4h) [RI" = f (@) + =3t a2 £ (B)" 4+ (e £ )"
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Oznaczmy ¢ = 3 d” f.(h)" < 0. Istnieje § > 0 takie, ze dla kazdego ¢ < § mamy ||n (th)||R|"| <

I—;‘ = 3¢, wigc g (t) < f(a) +ct™ — 5t" < f(a) = g(0), sprzecznos¢. Zatem dj; f o A,, musi by¢
nieujemna. Analogicznie pokazujemy druga wersje wypowiedzi. Parzystos¢ n wynika z nieujemnosci
i niezerowosci. O

Twierdzenie 48 (Warunek wystarczajacy ekstremum). Niech f : A — R bedzie n-krotnie r6zniczko-
walna w a. Zaktadamy, ze d* f =0 dlak =1,...,n — 1 oraz ze d” f o A, jest dodatnio (ujemnie)
okreslone (wtedy n jest parzyste). W takiej sytuacji f ma w ¢ minimum (maksimum) lokalne.

Dowéd. Ze wzoru Taylora f (a+h) — f(a) = 5d% f.(h)" + n(h) |h||". Z zalozenia d7 f.(h)" >
c||h]|"™ dla pewnego ¢ > 0 dowolnego h € E. Zatem f (a +h)—f (a) > (& + 1 (h)) |h||". Wyrazenie
w nawiasie jest dodatnie dla ||h|| < 1, co koriczy dowod. O

Przyktad. f (z,y) = 22 + y* ma minimum (globalne) w (0,0). Jest d,0) f = 2z + 443 = 0 oraz

0 0] |he
niezerowym ho. Warunek wystarczajacy nie jest wiec konieczny.

2 0| |h
d%o,o) f.(h)? = [hl h2:| ] [ 1] = 2h?, co nie jest dodatnio okreglone, bo zeruje sie przy

Przyktad. Dla f (z,y) = 2 4+ y® — 3ay jest Vf (z,y) = [32® — 3y, 3y? — 3z], zatem warunek ko-

nieczny jest spelniony w (0,0) i (1,1). Mamy d%x Y) f= lﬁxg g?)] . co daje forme kwadratows, po-
’ -3 by

stacid?, | f.()* =4 02 (z,y) = (0,0)

Y 6h‘1 + 6h2 — 6h1h2 (:E’ y) = (17 1)

jaca rozne znaki i nie ma ekstremum, natomiast w (1, 1) jest d%l’l) £ (h)? =3(hy —ho)>+3||h))* >

. Zatem w (0, 0) dostajemy forme przyjmu-

3||A)|?, czyli mamy dodatnia okreslono$é i minimum.

Uwaga. W skoriczonym wymiarze E ~ R" i dodatnia okreslonosé jest po prostu dodatnioscia. Dla

funkcji dwukrotnie rézniczkowalnej mamy macierz Hesse’ego H = d2 f = [ 622 . (a)} . Zachodzi
i i,j=1
hy
Q2 F (k)= [k o R H | 3| = (e HR) = (b, HE),
b,

czyli mamy symetryczna forme dwuliniowa B (h, k) = d2 f (h, k).

Twierdzenie 49. Niech V bedzie przestrzenia wektorowa nad R i niech dim V' = n > 1. Dla dwuli-
niowej formy symetrycznej B : V x V — R istnieje baza ortonormalna {e;}_;.

Dowéd. Oznaczmy S; = Sy (sfera jednostkowa), V7 = V. Wiemy, ze B jest ciagte a S; zwarte.
Zatem B o Ay osiagga maksimum na S; w punkcie e; € S7.

Niech V5 = (Rel)L (domknieta podprzestrzen). So = S N Vs jest zwarte. Zatem B o Ay osiaga
maksimum na Sy w punkcie eg € S. Ogolnie kiadziemy Vi1 = {x € Vi : (z,e) =0} 1 Sp1 =
SkNViy1, mamy B (eg41, ex+1) > B (z,z) dlaz € Sgy1. W kazdym kroku spada wymiar rozwazanej
przestrzeni, wiec procedura koriczy sie po n krokach. Wektory {ej,...,e,} sa ortogonalne, wiec
liniowo niezalezne i tworza baze V.

Dla ustalonych ¢ < j i ¢ € R niech w;; (t) = 7=+ € S;. Mamy

B (62',61') + tzB (6]‘,6]‘) + 2tB (61‘,63‘) =B (61' + tej,ei + t(ij) S B (61',61‘) ||61 +t6jH2 =
B (e;,¢€;) (||€i||2 + 2t (e, €5) + 12 ||€j||2> = B(eiei) (1+17),
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gdzie nieréwnosé wynika z definicji e;. Dostajemy wiec
t2 (B (ei,ei) - B (ej,ej)) — 2tB (ei, 6j) Z 0.

Jest to wielomian kwadratowy (ze zmienna t), ktorego pierwiastkiem jest 0. Jego nieujemnosé im-
plikuje, ze drugim pierwiastkiem tez jest 0, a wiec jego wyrdznik jest zerowy, czyli 4B (e;, ej)2 =0.
Zatem wskazane wektory tworza baze ortonormalng.

Uwaga. Stosujac powyzsze twierdzenie do V. = R™ i B (h,k) = (h, Hk) wybieramy baze ortonor-
malng {v;};_, taka, ze (vj, Hv;) = 0 dla i # j. Mamy Hv; = >0 A\jv;, wige dla jo # i mamy

0= <vij/\jUj> =D N Wi, v3) = Njo 3o |I* = Ao
j=1

Jj=1

To znaczy, ze Hv; = \v; i H = diag (A1, ..., A,) W tej bazie. Stad

B(z,z) = <Z xjvj,Hinvi> = Z (v, TiAv;) = Z)\zxf
j=1 i=1 =1 i=1

jest postacia kanoniczng formy kwadratowej B (z, z). Z tego wynika, ze dodatnia lub ujemna okre-
$lono$¢ B zalezy od wartodci wlasnych \; — wszystkie musza mie¢ ten sam znak.

Uwaga. Niech K C R™ bedzie zwarty. Funkcja ciagta f : K’ — R osiagga kresy na K. Niech ¥; =
{r € int K : d, f = 0} bedzie zbiorem punktoéw krytycznych. Zachodzi {min f (K),max f (K)} C
f(Zf) U f(OK), bo jesli ekstremum lezy we wnetrzu, to jest ekstremum lokalnym.

W przypadku dim F = oo zbiér zwarty K ma puste wnetrze (bo kula domknieta nie jest zwarta),
wiec nie da sie tam zastosowaé technik opartych na rézniczkowaniu.

20. Rozmaitosci 2025-12-11

Definicja 33. Niech X bedzie przestrzenig topologiczna Hausdorffa spetniajacg drugi aksjomat prze-
liczalnosdci. X nazywamy rozmaitoscia topologiczna wymiaru n € N, gdy lokalnie przypomina R™,
co znaczy, ze kazdy punkt a € X posiada otoczenie otwarte a € U, ktore jest homeomorficzne z R™.

Uwaga. Przyjmuje si¢ czesto, ze () jest rozmaitoscia topologiczng wymiaru —1.
Dowolna przeliczalna dyskretna przestrzen topologiczna jest rozmaitoscia topologiczng wymiaru 0.

Rozmaito$¢ posiada lokalnie wlasnosci topologiczne R™. W definicji mozna zastapi¢ R™ przez kule
otwartg w R".

Uwaga. Gdyby z definicji wyrzuci¢ Ts, to i tak mamy te wlasnosé lokalnie. Nie musi to by¢ jednak
wlasnosé globalna: na X = R\ {0} U {p1,p2} (gdzie p1,ps to punkty poza prosta) definiujemy
topologie, ktorej baza sklada sie z tej indukowanej z R oraz zbioréw postaci {p;} U ((—e1,e2) \ {0}).
Nie da sie oddzieli¢ p; od ps, ale lokalnie jest to przestrzen Tb.

Definicja 34. Na przestrzeni topologicznej Hausdorffa X z 2AP n-wymiarowym atlasem nazywamy
rodzing {(U;, i)}, gdzie U; € top X\ {0}, a ¢; : U; — R™ sa homeomorfizmami oraz | .; U; = X.

Homeomorfizmy ¢; nazywamy mapami (ang. charts).

Definicja 35. Jesli U; N U; # 0, to mozemy rozwazy¢ ¢; (U; NU;) € top R™. Odwzorowanie

=1
pij = @i 0 (@) lpuinuy)

jest homeomorfizmem zwanym odwzorowaniem przejscia lub przejsciowka (chart transformation).
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Definicja 36. Rozwazmy przestrzen topologiczna M speiajaca To i 2AP. Ustalmy cialo K € {R, C}
im e N,k e NU{oo,w}. Rodzing A = {(U;, ¢;)},c; nazywamy m-wymiarowym atlasem rozniczko-
wym klasy C* na M, gdy

1. dla kazdego ¢ € I mamy U; € top M \ {0}.

2. dla kazdego i € [ istnieje V; € top K™ takie, ze ¢; : U; — V; jest homeomorfizmem.

3. Uses Ui = M.

4. dla wszystkich 4, j € I takich, ze U; NU; # 0 przejsciowka ¢;; jest klasy ck.

Uwaga. Mamy ¢;; = idy, oraz ¢j¢ o v;; = @i. Z tego wynika (pi_jl = ¢j;. Zatem ¢;; sa C-
dyfeomorfizmami.

Odwzorowania {go;l} nazywa sie lokalng parametryzacja lub lokalnym ukladem wspoétrzednych.

Przy ustalonym M, m, k wymiar m jest wyznaczony jednoznacznie (wynika z twierdzenia Brouwera
— jesli topologie si¢ zgadzaja, to wymiar algebraiczny tez).

Uwaga. Atlasy rozniczkowe na M ustalonej klasy sa uporzadkowane liniowo przez inkluzje. Latwo
sie¢ przekonaé, ze mozna stosowaé lemat Kuratowskiego-Zorna, wiec istnieja atlasy maksymalne
ustalonej klasy.

Definicja 37. Atlasy maksymalne dla M, k nazywamy m-wymiarowymi strukturami rézniczkowymi
(rzeczywistymi lub zespolonymi, odpowiednio) klasy C*. Oznaczamy ich zbior przez Dj,.

Definicja 38. Kazdy atlas rozniczkowy A klasy C* na M zawiera sie w pewnym atlasie maksymalnym
(otrzymanym przez dorzucanie do A map, ktore daja przejsciowki klasy CF), ktéry oznaczamy
Dk (A) i nazywamy struktura generowang przez atlas A.

Uwaga. Kazdy atlas klasy C* jest poszerzalny do struktury klasy C*~', czyli na przyktad D, C
Do C Dy, gdzie przypadek k = 0 to rozmaitosci topologiczne.

Definicja 39. Przestrzen topologiczna M spelniajaca T» i 2AP nazywamy rozmaitoscia, rzeczywi-
sta (zespolong) wymiaru m klasy C¥, gdy zadana jest na niej struktura rézniczkowa rzeczywista
(zespolona).

Uwaga. Przyjmuje si¢, ze M = ) jest rozmaitoscig analityczng (rzeczywistg i zespolong) wymiaru
—1.

Rozmaitosé klasy C* jest tez klasy C¢ dla ¢ < k. Kazda rozmaitoié rozniczkowa zespolona wymiaru
m jest analityczna rozmaitoscia rzeczywista wymiaru 2m.

Zadanie struktury klasy C* na M sprowadza sie do ustalenia atlasu klasy C*, ktory mozna rozszerzyé
do struktury.

Propozycja 27. Niech A, B beda atlasami m-wymiarowymi klasy C*¥ na M, a D D A bedzie struk-

turg klasy C* wymiaru m na M. Niech A = {(U;, ;)};c;- Whedy

U € top M\ {0},

p:U — V € topK™ homeomorfizm,
Vier po cp;l, ;0 gpfl klasy Ck,
Vier.u;nu=o ¢ © (©s vinw) i 0 (¢

D= (U7<p) :

Do tego Dy (A) = Dy, (B) <= AU B jest atlasem klasy C*.

Dowéd. Drugie wynika z pierwszego, a pierwsze jest oczywiste. O
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Whiosek. Dany atlas generuje doktadnie jedna strukture.

Przyktad. M = Q € topK™ \ {0} z atlasem A = {(Q,idg)} jest rozmaitoscia analityczna wymiaru
m. Wtedy
0 £ U C Q otwarte,
D (A) =< (U,p): ¢:U —V € topK™ homeomorfizm,
@, ¢~ ! klasy C*

Zatem Dy, (A) = Dy, ({(Q, h)}), gdzie h : Q — Q jest dowolnym C*-dyfeomorfizmem.

Przyktad. Niech M = {(z,y) € R? : 2? + y* = 1} z topologia indukowang z R?. Rozwazmy funkcje
¥ (t) = (cost,sint) € M dlat € R. Dla V; = (0,2r) i Vo = (m,3n) ustalamy ¢1 = (|v,) " i
@2 = (1|v,) " Sa to mapy na M odpowiednio na zbiorach Uy = M\ {(1,0)} i Uy = M\ {(~1,0)}.

Przejsciowka 1o jest C-dyfeomorfizmem.

Dla M nie istnieje jedna globalna mapa, bo M jest zwarty, a wiec nie jest homeomorficzny z R.

Przyktad. Rozwazmy sfere Riemanna: C = C U {oco} (uzwarcenie jednopunktowe Aleksandrowa).

1 *
=, z€C
Mozemy zada¢ na niej mapy ¢1 : C 3 2z = z € C oraz ¢y : C* U {0} 3 2 — {Z . Mamy
, Z2=00

w12 (2) = %, otrzymujemy strukture analitycznag, i C jest zespolong, zwarta i spdjna rozmaitoscia,

jednowymiarows,.

Takie rozmaitosci (zespolone, spojne, jednowymiarowe, klasy C') nazywamy powierzchniami Rie-
manna. Istnieje twierdzenie Radé z 1925 roku, ktére moéwi, ze w tym przypadku mozna pominaé
2AP w definicji rozmaitosci.

Przyktad (Rozmaitosci Grassmanna). Niech V' bedzie przestrzenig wektorowa nad K, dimV = m >
1. Dla 1 < p < m definiujemy G, (V) = {L:L <V,dimL = p}. Ten obiekt nazywamy p-tym
grassmannianem. G, (V) posiada strukture zwartej rozmaitosci analitycznej wymiaru p (m — p).

Dla p = 1 dostajemy przestrzen rzutowa przestrzeni V', ktéra mozna otrzymaé jako ilorazowa

przestrzen topologiczna zadang relacja v ~ w <= dxex Av = w. Odpowiedni atlas otrzymujemy
definiujac

5 as Ti—1 T; x _
Ui = {[(#1,. .., &m)]_ : 3 £ 0} 25 (11+1m) 2 =

21. Podrozmaitosci

Definicja 40. Rozwazmy rozmaitos¢ M wymiaru m klasy C* nad K. Ustalmy 0 < n < m. Zbior
() # N C M nazywamy podrozmaito$ciag M wymiaru n, jesli dla kazdego a € N istnieje otoczenie
otwarte a € U oraz mapa ¢ : U — K™ taka, ze

UNN=¢p '{zx=(z1,.- ., Zm) EK™ 121 = ... =2, = 0}).

Przyjmujemy, ze () jest podrozmaitoscig wymiaru —1. Ponadto gdy n = m — 1 méwimy, ze N jest
hiperpowierzchnia, a ogélnie liczbe m — n nazywamy kowymiarem V.

Uwaga. Podrozmaito$é n-wymiarowa N jest rozmaitoscia abstrakcyjna wymiaru n i tej samej klasy,
co M. Swiadczy o tym atlas Ay = {(UN N, ) : (U,¢) € A’}, gdzie A’ sklada si¢ z tych elementow
atlasu M, ktore spelniaja warunek z definicji podrozmaitosci, a dla ¢ = (p1,...,¢,) bierzemy

@ = (1, 0n)-

Punkty sa podrozmaito$ciami zerowymiarowymi.

Jesli N € top M \ {0}, to N jest podrozmaitoscia wymiaru m = dim M.
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Jesli V' jest przestrzenig wektorowa nad K, to dowolny izomorfizm z K™ wyznacza na V strukture
rozmaitosci m-wymiarowej analitycznej. Wtedy podprzestrzenie afiniczne sg podrozmaito$ciami wy-
miaru takiego, jak algebraiczny.

Definicja 41. Niech () # Q € topK", f : Q — K™ bedzie klasy C*. Rzedem f w a nazywamy wartosé
rg f (a) = dimImd, f. Jest to rzad macierzy d, f.

Definicja 42. Niech D = {z € K: |z| < 1}. Definiujemy D, = D = {z € K: |z| <r} dla r > 0.
Bedziemy uzywaé polidyskow D C K™.

Twierdzenie 50 (O statym rzedzie). Niech ) # Q € topK", f : @ — K™ bedzie klasy C*, gdzie
k € N U {oo,w}. Niech istnieje d € N takie, ze dla kazdego x € Q zachodzi rg f (a) = d. W takiej
sytuacji dla kazdego a € € istnieja otoczenia a € U C Q oraz b = f(a) € W C K™ takie, ze
f(U) C W oraz istnieja C*-dyfeomorfizmy u : D* — U, w : W — D™ posylajace odpowiednio
0—aib—0,dlaktérych (wo fou)(z1,...,2,) = (x1,...,24,0,...,0) dla (z1,...,2,) € D™
Dowdéd. Bez straty ogolnosci m,n,d € N, bo inaczej sytuacja staje sie trywialna. Mozna zatozy¢
a=0€K" b=0 € K™, bo wystarczy ztozy¢ f z translacjami f: T_p 0 f 0 Ty|q—a, co nadal jest
klasy C* i d, f: idgm o dgyq f o idgn, wiec rzad sie nie zmienia, a translacje sa dyfeomorfizmami
analitycznymi.

Jedli L € £(K™,K™) ma rzad d, to dimker L = n — d, wiec mozna uzupehié¢ do sumy prostej

=V @ ker L, gdzie V ~ K¢ ~ Im L. Wybieramy baze vy,...,vq dla V i vg1,...,v, dla ker L.
Zauwazmy, ze L (v1), ..., L (vgq) sa baza dla Im L. Uzupekliamy ja wektorami wg1, ..., w,, do bazy
K™. Definiujemy izomorfizmy ¢ : K™ — K" poprzez e; — v; oraz ¢ : K™ — K™ poprzez L (v;) — ¢;
dlaj=1,...,doraz w; = e;dlaj=d+1,...,m.

Teraz (Yo Loy) (Y xie;) = (YoL)(Xi,zv) = ( P vl> = (z1,...,24,0,...,0).

Zatem bez straty ogolnosc1 mozemy przyjaé, ze do f () = (21,...,24,0,...,0), bo wystarczy za-
stapi¢ f przez ¢ o fo

Zapisamy f — (fl,---,fm) fwermy v Q3@ = (01,0 @n) = (fi (@), fa (@), Tas1, ooy n):
To odwzorowanie jest klasy C* i dgv = (do fi,...,do fa,Pdt1s---,Pn), gdzie p; to rzutowanie na

j-ta wspolrzedna. Mamy tez dg f; = p;, wiec dgp v = idg» i z twierdzenia o lokalnym dyfeomorfizmie
istnieje otoczenie 0 € U C Q oraz r > 0 takie, ze v|y : U — rD" jest C*-dyfeomorfizmem. Niech
bedzie jego odwrotnoscig.

Mamy @ (Z1,...,%n) = (T1,..,2n) <= (T1,...,%,) = (f1(®),..., fa (@), 2q21,...,2y), Wiec
(fo)(T1,. . @n) = (T1,...,Tq,(far10W) (Z),...,(fm o W) (T)).
Oznaczmy g = fou : *D" 3 z = (21,...,2Z4,9a+1 (), ..., gm (z)) € K™. Jest to odwzorowanie

klasy C* i g (0) = 0.

0
0(gd+1,---,9m)
a(wd+1;-~7wn) (x)
nie ma rzad d, ale juz I; ma taki rzad, a wiec prawa dolna podmacierz musi byé¢ zerowa. Wo-
bec 29dt1,9m)
O(Td+1,--Tn)

(9dt1y- - 9m) (@1, s 2n) = (Gat1s- -5 gm) (X1, .., 24,0,...,0).

1,
Mamy d, g = l ¢ 1 dla pewnego « oraz d, g = dg(s) f o dz u. To odwzorowa-
o

() = 0 mamy, ze (gg+1,---,gm) nie zalezy od zmiennych xgi1,...,z,, a zatem

Otrzymalismy g (x1,...,Zm) = (1, Zd, gat+1 (1,24, 0,...,0) ..., gm (T1,...,24,0,...,0))
dla (x1,...,x,) € rD".

Rozwazmy @ : rD? x K™% — rD¢ x K™~ ¢ zadane wzorem

ﬂj(y):(ylv"'7yd7yd+1_gd+1 (y17"'7yd707"'70)a"'7y7n_gm(yla"'aydaoa"'?o))'

Jest ono klasy C* i odwracalne (ten sam wzor, tylko z plusami), wiec w jest C*-dyfeomorfizmem.
Oczywiscie w (0) = 0. Niech W = w~! (rD? x rD™~4). Woéwczas (w|w) o fou : rD* x rD"~% 5
xr — (LEl,...,JL‘d,O,...,O).

Pozostaje przeskalowaé: u:D" 2z = u(rz) e U, w: W 3y — 1w (y) e D™ O
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Uwaga. Z definicji rzedu d < min {n, m}. Twierdzenie méwi zatem, ze z doktadnoscia do dyfeomor-
fizmu zamiany zmiennych w dziedzinie i przeciwdziedzinie odwzorowanie o stalym rzedzie zachowuje
sie lokalnie jak rzutowanie (gdy m < n) lub zanurzenie (gdy n < m).

Uwaga. Badanie odwzorowania o stalym rzedzie staje sie duzo przyjemniejsze, na przyklad dla
V € f(U) mamy w (V) = (2/,0) dla 2/ € K¢ i 0 € K™ ¢, wiec

)y =1 (w_l (w (b'))) =u (u_l (f_l (w_l (x',O)))) =u ((w ofo u)_1 (x’,O))

={(',Tas1,- s Tm)  Tas1,-. ., Tm € D}.

22. Immersje i submersje
2025-12-15

Definicja 43. Niech E, F' beda przestrzeniami Banacha nad K, Q € top E. Funkcje f : Q@ — F
nazywamy immersja (submersja), jesli jest klasy C! oraz w kazdym z € Q roézniczka d, f jest
monomorfizmem (epimorfizmem).

Mowimy tez, ze f jest immersja (submersja) w punkcie a € €, jesli odpowiednia wlasnosé jest
spelniona w punkcie a (i niekoniecznie w innych).

I Uwaga. Jesli f jest immersja w a, to dim £ < dim F. Jedli jest f submersja w a, to dim £ > dim F.

Uwaga. W przypadku E ~ K", F ~ K™ do immersji i submersji mozemy stosowaé twierdzenie o
rzedzie. Odwzorowanie bedace w a jednoczesnie immersja i submersja jest lokalnym dyfeomorfizmem
w otoczeniu a.

Definicja 44. Niech (X, 7) bedzie przestrzenia topologiczna, f : X — R. Mowimy, ze f jest polciagta
z gory (co zapisujemy f € C1), jesli dla kazdego ¢ € R mamy {z € X : f (x) < t} € top X. Podobnie
f jest polciaglta z dotu (f € CY), jesli dla kazdego t € R mamy {x € X : f (z) >t} € top X.

Uwaga. Funkcja charakterystyczna zbioru x 4 jest potciagla z gory wtedy i tylko wtedy, gdy A = A,
a polciagla z dotu, gdy A = int A.

fell — —feclh.

f jest polciagla z gory, jesli dla kazdego t € R zbior {z € X : f (x) > t} jest domkniety. Podobnie dla
polciaglosci z dotu. Do tego jesli f jest polciagta z gory (dotu), to w pewnym otoczeniu rozwazanego
punktu wartosci f moga jedynie spada¢ (wzrastac).

Propozycja 28. f € C' <= limsup,_,, f (z) = f (a) dla kazdego a € X.

Dowéd. (=) Przypomnijmy, ze limsup,_,, f (z) = infys.sup,cy f(z). Z tego od razu wy-
nika limsup,_,, f (z) > f(a). Zalozmy nie wprost, ze limsup,_,, f () > f(a) + 2¢ dla pewnego
e > 0. Zbior U = {x € X: f(x)< f(a)+e} jest otwarty i zawiera a. Zatem sup,cy f(x) >
limsup,_,, f () > f (a) + 2¢, co przeczy definicji U.

( <) Nie wprost istnieje takie tg, ze A ={z € X : f (x) < to} ¢ 7. Wtedy istnieje a € A takie, ze
dla kazdego otoczenia U > a istnieje zyy € U \ A, a wiec sup, <y f (2) > f (zv) > to. Z tego wynika
limsup,_,, f (z) >ty > f (a), sprzecznosc. O

Propozycja 29. f € C* wtedy i tylko wtedy, gdy epigraf {(z,t) € X x R:t > f(x)} jest domknigty.
Dowéd. (=) Jesli (a,t) € X x R nie jest w epigrafie, to f (a) >ti{z € X : f(z) >t} x (—o0,1)
jest otwartym otoczeniem (a,t) roztacznym z epigrafem. Wobec dowolnosci (a,t) dopelnienie epi-
grafu jest otwarte.

(<) Ustalmy ¢t € R. Niech a € {z € X : f(x) > t}. Wtedy (a,t) nie jest w epigrafie, wiec istnieje
zbior otwarty U x V' zawierajacy (a,t) 1 zawarty w dopelnieniu epigrafu. W szczegolnosci U C
{z € X : f(x)>t}, co wobec dowolnosci a daje otwartosc. O
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Propozycja 30. Jedli f € CT(X,R) a K C X jest zwarty, to f|x osiaga maksimum (minimum dla
polciaglosci z dotu).

Propozycja 31. Niech 2 € topK", f :  — K™ bedzie klasy C!, a € Q oraz rg f (a
sytuacji istnieje otoczenie a € U C ) takie, ze dla kazdego x € U mamy rg f (
Q32 —rgf(z) €R jest polciagte z dotu.

W takiej

) = k.
x) > k, a wiec

)

Dowdéd. Rozwazmy nastepujacy ciag przeksztatcen:
o 1 € () przeksztalcamy w macierz A = d,, f,
e macierzy A przypisujemy ciag wszystkich jej minorow k x k: (A1,..., Ap),
o ciggowi minoréw (Ai,...,A,) przypisujemy ciag ich wyznacznikow (¢1,...,%p),
e liczymy sume > ©_, |t;| € R.

Cale to przeksztalcenie nazywamy o. Jest ono ciagte (wybor minoréw to zestawienie rzutowar, a
pozostale sa oczywiste). o (x) # 0 jest rownowazne istnieniu niezerowego minoru rzedu k macierzy
d, f,awiecrg f () > k. Mamy wiec o (a) # 0 iz ciaglosci o to samo zachodzi w pewnym otoczeniu
a, wiec mamy teze. O

Whiosek. Jesli rozniczka odwzorowania f jest monomorfizmem (epimorfizmem), to jest nim w oto-
czeniu punktu a, to znaczy jesli f jest immersja (submersja) w punkcie, to jest nig w calym otoczeniu.

Twierdzenie 51 (O submersji). Niech X ~ K" Y ~ K™, Z ~ K" ™ beda przestrzeniami unormo-
wanymi (zaktadamy, ze n > m), a € X. Niech f : (X,a) — Y bedzie kietkiem klasy C*, gdzie
k € Ny U{oo,w} oraz niech 7 : Y x Z — Y bedzie rzutowaniem. W takiej sytuacji d, f jest epimor-
fizmem wtedy i tylko wtedy, gdy istnieje kietek C*-dyfeomorfizmu ¢ : (X,a) — (Y x Z,(f (a),0))
taki, ze f =mo .

Dowdd. (= ) dimImd, f = m, czyli dimkerd, f = n — m i istnieje izomorfizm h : kerd, f —
Z. Zapiszmy X = kerd, f @ A i niech p bedzie rzutowaniem na pierwsza skladows. Rozwazmy
odwzorowanie ¢ = (f, h o p). Oczywiscie f = 7o (.

Mamy dg, ¢ = (dg f, h o p), wiec kerd, ¢ = kerd,, fNker (hop) = {0}, bokerp = A, a h jest izomor-

fizmem. Zatem d, ¢ jest monomorfizmem, czyli izomorfizmem ze zgodnosci wymiaréw. Twierdzenie
o lokalnym dyfeomorfizmie konczy.

(< )d, f=mod,, co jest zlozeniem epimorfizmow. O

Uwaga. Jesli f jest submersja, to jest odwzorowaniem otwartym, bo ¢ i 7 sg otwarte.

Odzyskujemy twierdzenie o rzedzie: f o p~! = 7.

Twierdzenie 52 (O immersji). Niech X ~ K" Y ~ K™ W ~ K™ " beda przestrzeniami unor-
mowanymi (zakladamy, ze m > n), a € X. Niech f : (X,a) — Y bedzie kielkiem klasy C*, gdzie
k € Ny U{oo,w} oraz niech ¢ : X — X xW bedzie zanurzeniem. W takiej sytuacji d, f jest monomor-
fizmem wtedy i tylko wtedy, gdy istnieje kietek C*-dyfeomorfizmu ¢ : (X x W, (a,0)) — (Y, f (a))
taki, ze f = pou.

Dowdd. (=) dimImd, f = n, wiec mozemy zapisa¢ Y = Imd, f ® A dla A ~ K™~". Istnieje
izomorfizm h : W — A. Rozwazmy odwzorowanie ¢ (z,w) = f () + h (w). Ewidentnie p ot = f.

d(a,0) ¢ = da fopx +hopw. Z whasnosci sumy prostej z,w € kerd,,0) ¢ <= do f =0Ah(w) =0,
a z monomorficznosci d, f i h to zachodzi tylko, gdy x, w = 0. Zatem d(4,0) ¢ jest monomorfizmenn,
czyli izomorfizmem ze zgodno$ci wymiaroéw. Twierdzenie o lokalnym dyfeomorfizmie koriczy.

(=) da f=d(,) ot co jest zlozeniem monomorfizméow. O

Uwaga. Jesli f jest immersja, to jest odwzorowaniem otwartym na obraz (jesli U jest otwarte, to
£ (U) jest otwarte w obrazie f). Jesli (X, 7) jest przestrzenia topologiczna a h : U — X jest (nawet)
homeomorfizmem na obraz, to niekoniecznie h (U) € top X. Zatem obraz immersji nie musi by¢
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I szczegdbdlnie tadny.

23. Podrozmaito$ci przestrzeni euklidesowej 2025121

Notacja. Niech 0 < n < m. Oznaczamy A (n,m) = {X: {1,...,n} — {1,...,m} | A silnie rosnaca}.
Dla A € A (n,m) mamy jednoznacznie wyznaczone dopelnienie, to znaczy X' € A (m — n,m) takie,
ze ImAUIm N ={1,...,m}.

Przyjmijmy K} = {(x,\(l), . ,xA(n)) cx=(x1,...,&m) € Km}, to znaczy K = Y1 | Kex -

Twierdzenie 53. Niech a € N C K™, 0 < n < m, k € Ny U {oo,w}. Nastepujace warunki sa
réwnowazne.

1. Istnieje otoczenie V 3 a i zbiér otwarty W C K™ oraz C*-dyfeomorfizm F : V — W, dla kto-
rego NNV = F~1 (K” X {O}mfn) =F1'{zeW:z,41=...= 1z, =0}). Inaczej méwiac
F(NNV) = (K" X {O}W_n) N W. Dodatkowo F (a) = 0. Takie F' nazywamy dyfeomorfi-
zmem prostujacym.

2. Istnieje otoczenie V > a i submersja klasy C¥ h : V — K™ " taka, ze h(a) = 0 oraz
NNV =h"1(0). Takie h nazywamy submersja opisujaca.

3. Istnieje otoczenie V' 5 a oraz A € A (n,m) i otwarte U C KY C K™ oraz f: U — (K’;)l klasy
CF takie, z2e NNV =Ty = {z + f () : x € U} (wykres).

4. Istnieje otoczenie V 3 a, 0 € G C K™ otwarte oraz immersja klasy C* g : G — K™ taka,
ze g(G) =V NN, g(0) =aoraz g : G — VNN jest homeomorfizmem. Takie g nazywamy
lokalng parametryzacja lub lokalnym uktadem wspotrzednych.

Gdy zachodzi ktoérykolwiek z tych warunkéw, to stozek styczny
Ca (N) = {U e K™: 3(:v,,)gN:z,,~>a3(t,,)gIR:tV>O ty, (xl/ - G,) — U}

jest n-wymiarowa podprzestrzenia wektorowa oraz zachodzi

Cy (N) = d, F! (K" x {o}m‘") —kerd,h =Ty, 5 =Imdyg.
Dowdd. Przypadek n = 0 jest trywialny, n = m podobnie. Zalézmy wiec 0 < n < m.

(1 = 2) Niech F' = (Fy,...,Fy, Fry1,..., Fi). Oznaczamy h = (Fq1, ..., Fip). V mamy razem
O(F1,....,Fy)
z F z zalozenia, oczywiscie VNN = h™1(0) i h jest klasy C*. Mamy d, F = (a)

] , wiec

rzad dg b to m — n i mamy submersje.

(2 = 3) Bierzemy h : V — K™ " z zalozenia. Mamy rgd, h = m — n, wiec istnieje niezerowy

minor (m —n) X (m—n), czyli wybor indeksow p € A (m —n,m) taki, ze det (%h (a) # 0. Z
=

twierdzenia o funkcji uwiktanej zbior N NV = h=1(0) jest (lokalnie, w otoczeniu a) wykresem

funkcji klasy C* postaci z,, = f (x,/), gdzie i/ € A (n,m) jest uzupelnieniem p.

(3= 4) NiechG=U, g:G>z— (2,f(2)) € [y = NNV. Jest to homeomorfizm klasy C*.
da, g = (idgn, dqa, f), a wiec jest to immersja.

(4 = 1) Z twierdzenia o immersji dla g istnieje otoczenie 0 = g=! (a) € W C G oraz U > a takie,
ze g (W) C U oraz istnieje C*-dyfeomorfizm w : U — w (U) € top K™ taki, ze (wo g) (2) = (2,0) €
K" x K™=, Skoro g byly homeomorfizmem na obraz, to w—! (K" X {O}m_") =UNN.

To koticzy dowod pierwszej czesci. Z AM2 wiemy juz, ze majac (3) dostajemy C(a, f(a,)) (I'r) =
Lq,, f,a to jest rowne Cy (N) = C, (N NV). To juz daje nam, ze stozek styczny jest n-wymiarowsa
podprzestrzenia liniowa. Bez straty ogdlnosci we wszystkich warunkach mozemy wybraé¢ jedno
wspolne otoczenie V 5 a. Mamy NNV =T, = F~! (K” x {0}7"‘") =h1(0) = g(G).
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Mamy h (zx & f (z2)) =0 = kerdgh 2 T'q,  ir16wno$¢ z réwnosci wymiarow.

Oznaczmy ® = (Fy,...,F,) 19 = (Ft1,..., Fn). Mamy d, F = (dg @,d, ). F (z) @ f (2))) =
(@ (zx @ f(22)),0), czyll ¥ (zx & f (22)) =01 jak wyzej kerd, ¥ 2 I'q, ¢.

Wreszcie ho g =0, wiec dghodgg=01iImdyg C kerd, h i znowu réwnosc. O

Uwaga. Zauwazmy, ze w calym powyzszym dowodzie sprawdzamy rzad rézniczek w jednym punkcie
a 1 to wystarcza na mocy poélciagtosci rzedu z dotu.

Definicja 45. W sytuacji z twierdzenia N jest w a n-wymiarows podrozmaitoscia K™ klasy C*, a
stozek styczny, oznaczany teraz T, N, jest elementem G,, (K'™) i jest jej przestrzenia styczna w a.

Uwaga. Wtlasno$¢ bycia podrozmaitoscia jest wlasnoscia otwarta, to znaczy jesli N jest taka w a,
to jest rowniez w b € U N N dla pewnego otoczenia b € U C K™.

Jesli N jest podrozmaitoscia K™, to jest rozmaitoscia zadana przez atlas (K™, Dy, ({(K™,idgn)})).

N zawsze rozwazamy z topologia indukowana. Z twierdzenia Brouwera wymiar N jest jednoznaczny.
Dla ustalonej podrozmaitosci N istnieje najwieksza klasa, jakiej jest ta podrozmaitosé.

O ile wykres funkcji klasy C* jest podrozmaitoscia klasy C*, o tyle implikacja w druga strone nie
dziala. Funkcja /z nie jest rozniczkowalna w zerze, a jej wykres jest podrozmaitoscia analityczna.

Podrozmaito$é¢ topologiczna mozna zdefiniowaé poprzez pierwszy warunek z twierdzenia z home-
omorfizmem w miejsce dyfeomorfizmu.

Podrozmaitos¢ jest lokalnie domknigta, to znaczy dla a € N i otoczenia U 3 a zbior UNN C U
jest domkniety. Rownowaznie brzeg ON = N \ N jest domkniety.

W twierdzeniu o rzedzie dla f : Q — K klasy C* statego rzedu d otrzymujemy lokalnie dla kazdego
a € € istnienie otoczen U 3 a, f (a) € W takich, ze f (U) C W. Wtedy f (U) jest podrozmaitoscia
d-wymiarowg klasy C*. =1 (y) N U jest podrozmaitoscia (p — d)-wymiarows.

Zachodzi twierdzenie Whitney’a: kazda rzeczywista rozmaitosé¢ abstrakcyjna m-wymiarowa daje sie
zanurzy¢ ze struktura w przestrzenn R2+1 to znaczy potraktowaé jak podrozmaitosé R?™+1 (bez
zmiany klasy). Twierdzenie nie zachodzi w przypadku zespolonym — jedyne podrozmaitosci zwarte
C" to zbiory skoriczone, a na przyklad sfera Riemanna C jest zwarta i wymiaru 1.

24. Podrozmaitosci z brzegiem
2026-01-08

Definicja 46. () # N C R™ jest n-wymiarowa podrozmaitoscia klasy C* z brzegiem, jesli dla kazdego
a € N istnieje otoczenie V' 3 a takie, ze zachodzi jeden z wykluczajacych sie warunkdow:
e istnieje C*-dyfeomorfizm prostujacy F : V. — W € topR™, czyli taki, ze F (a) = 0 oraz
F(NAV)= (]K" X {0}’”*") nw,

e istnieje C*-dyfeomorfizm ® : V. — U € topR™ taki, ze ®(a) = 01 ®(NNV) = UN
{zeR™: 2z, >0,2p41=... =y, =0}

oraz jesli oznaczymy ON = {a € N : w a zachodzi drugi warunek}, to N # . Zbiér N nazy-
wamy brzegiem podrozmaitosci V.

Uwaga. Powyzsze warunki wykluczaja sie, bo gdyby istnialy oba odwzorowania ® i F, to ¥ = ® o
F~1: W = U jest C*-dyfeomorfizmem pomiedzy otoczeniami 0 takim, ze W (W NR" x {O}m_"> =

UNR" ! x Rsg x {0}, wiec mozna go potraktowaé jako odwzorowanie R™ D W — U C R
Skoro dg ¥ jest monomorfizmem, to jest izomorfizmem, wiec ¥ jest w otoczeniu zera odwzorowaniem

otwartym, co przeczy temu, czym jest obraz ¥, bo H,, = {x € R™ : x,, > 0} nie jest homeomorficzne
z kula B,,.
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Twierdzenie 54. Niech N C R™ bedzie n-wymiarows podrozmaitoscia klasy C* z brzegiem. Wtedy
N\ ON jest n-wymiarowa podrozmaitoscia klasy C*, a ON jest (n — 1)-wymiarowa podrozmaitoscia
klasy C*.

Dowdd. Pierwsze oczywiste z definicji dyfeomorfizmu prostujacego, a dla a € 0N mamy ON NV =
ot (UﬂR"’l X {O}m_nH), bo dla z € UNR" 1! x Ryg x {0} " istnieje otoczenie U, C U w
ktorym kazdy = € U, ma x,, > 0, a z tego wynika, ze jest w nim spelniony pierwszy warunek. Zatem
mamy dyfeomorfizm prostujacy, co dowodzi tezy. O

Definicja 47. Ustalmy n-wymiarows podrozmaitos¢ N C K™ klasy C* oraz () # G C K. Odwzoro-
wanie g : G — K™ nazywamy lokalng parametryzacja (lokalnym opisem, mapg odwrotna, lokalnym
uktadem wspotrzednych) klasy C* dla N, gdy g jest immersja klasy C* i istnieje V € top K™ takie,
ze g (G) = NNV ijest to homeomorfizm na N N V.

Definicja 48. Rodzing {g;},.; lokalnych parametryzacji podrozmaitosci N klasy C* nazywamy atla-
sem odwrotnym, jezeli |J;c; g: (Gi) = N.

Propozycja 32. Kazda podrozmaito$é posiada atlas odwrotny mocy co najwyzej Wo, a jesli jest
zwarta, to posiada nawet skonczony atlas odwrotny.

Dowéd. Skoro N C K™, to mozemy wykorzysta¢ drugi aksjomat przeliczalnosci, a wiec wlasnosé
Lindel6ffa. O

Twierdzenie 55 (O przejsciéwkach). Niech N C K™ bedzie n-wymiarowa podrozmaitoscia klasy
ck, Vi € topK™, G; € topK"™ dla j = 1,2. Niech g; : G; — N NV; =1 W; beda dwiema
lokalnymi parametryzacjami takimi, ze W1 NWo # 0 oraz H; = g;l (W1 N Wy) C G,. Odwzorowanie
xX=g;'0 91|g;1(UmU2) : Hy — Hj jest C*-dyfeomorfizmem.

Dowdéd. Oczywiscie x jest homeomorfizmem, wiec iniekcja i wystarczy pokazaé, ze dla kazdego
t € Hy rozniczka dq x jest izomorfizmem. O

25. Stozki styczne i normalne
2026-01-08

Definicja 49. Niech N C K™ bedzie n-wymiarowa podrozmaitoscig klasy C*, f : N — KP? funkcja.
Mowimy, ze f jest klasy C¢ dla 1 < ¢ < k, jesli dla kazdego a € N istnieje lokalna parametryzacja
¢ podrozmaitosci N w punkcie a, przy ktorej f o g jest klasy C*.

Uwaga. W powyzszej sytuacji f o g jest klasy C’ dla dowolnej lokalnej parametryzacji g, bo fog =
fogog~teg.

Twierdzenie 56. Niech N C K™ bedzie n-wymiarows podrozmaitoscia klasy C*, f : N — K?
funkcjg, a 1 < £ < k. Wowczas f jest klasy C* wtedy i tylko wtedy, gdy dla kazdego a € N istnieje
otoczenie a € V C K™ takie, ze istnieje f : V — KP klasy C taka, ze flynn = flvnn-

Dowéd. O

Definicja 50. Dla f : N — KP klasy C* na podrozmaitosci klasy C* mozemy okresli¢ rozniczke
do f:=dq flr,n : TuN — KP, gdzie f jest dowolnym rozszerzeniem klasy C* na otoczenie punktu
a € N.

E

Definicja 51. Niech E bedzie przestrzenia unormowana nad K, a € E oraz A C E. Zbior S C
S #0

nazywamy rzeczywistym (odpowiednio zespolonym) stozkiem o wierzchotku w zerze, gdy
oraz dla kazdego A € R>g (odpowiednio A € C) zachodzi \S C S.
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Definicja 52. Stozek styczny Peany do A w punkcie a okreslamy jako

Ca (A) = {U ek | El(a,,)gA:al,~>a EI()\l,):)\,,>0 >\u (0,,, - a) — U} .

Propozycja 33. 1. C,(A)#0 < a€ A.
2. Dla a € A zbior C, (A) jest stozkiem rzeczywistym.
3. JesliO#£veC,(A)iv=1lm, A, (a, —a), to ﬁ — ﬁ
4. Stozek S C F jest wyznaczony jednoznacznie przez swoj §lad na Sg, przy czym S NSg =
) < S={0}.
5. Jesli a jest punktem izolowanym A, to C, (A) = {0}.
6. Jeslia € int A, to Cy (A) = E.
7. Oy (A) zalezy wylacznie od kietka (A, a).

Propozycja 34. Niech F, G beda przestrzeniami unormowanymi nad K, £ = F' x G z norma produk-
towg oraz A C E. Jedli istnieje otoczenie zera U C EiC > 0 takie, ze UNA C {(z,y) : |ly|| < C =]},
to Cy (A) N {0} x G = {0}. Implikacja w druga strone zachodzi, o ile dim G < +o0.

Dowaéd. O

Propozycja 35. Jesli E, F sa przestrzeniami Banacha nad K, f : (E,a) — (F,b) jest ciaglte w a, to
jesli f jest rozniczkowalne w a, to istnieje podprzestrzen wektorowa A C E x F taka, ze dim A =
dim E, AN{0} x F' = {0} i A = C(4) (I'y). Przeciwna implikacja zachodzi, o ile dim F, dim F' < 4-o0.

Dowéd. O

Twierdzenie 57. Niech N C K™ bedzie n-wymiarowa podrozmaitoscia klasy C*, a € N, v € K™.
Nastepujace warunki sa rownowazne.

1. veT,N.
2. Istnieje € > 0i:eD — N klasy C* takie, ze v (0) = a i+’ (0) = v.
3. veC,(N).
Dowaéd. O

Twierdzenie 58. Niech ¢ : (K™,a) — (K",b) bedzie klasy C!, a € A, gdzie A C K™. W takiej
sytuacji d, ¢ (Cy (A)) € Cy (6 (A)), gdzie rownosé zachodzi, gdy kerd, ¢ N C, (A) = {0} o ile ¢ jest
okreslone w otoczeniu A, ktére musi by¢ zwarte lub ¢|7 jest wlasciwe (przeciwobraz zwartego jest
zwarty) a do tego ¢~ (b) N A = {a} (spemia to na przyktady dyfeomorfizm).

Dowdéd. O

Definicja 53. Dla stozka rzeczywistego S C R™ o wierzchotku w zerze definiujemy jego stozek nor-
malny N (S) = {w € R" : Vyes (w,v) <0} Gdy S = C, (A) stosujemy zapis N, (4) = N (C, (A)).

Uwaga. N (S) jest stozkiem rzeczywistym, N (S)NS = {0}. Jesli S jest podprzestrzenia wektorowa,
to N (S) = S+.

Propozycja 36. Jedli a € A C R™ $wiadczy o wartosci d (z, A) = inf {||jx — al| : @ € A} w normie
euklidesowej (przy ustalonym z), to z —a € N, (4).

Dowéd. Chcemy pokazaé¢ (x —a,v) < 0 dlav € C,(A) \ {0}. Mamy v = lim,_, ¢, (a, —a) dla
pewnych ciagow, wtedy ||z — a,|| > ||z — al|, bo a, € A. Po przeliczeniach mamy teze. O

Definicja 54. Dla podrozmaitosci N C K™ i punktu a € N okre§lamy przestrzen normalng do N w
punkcie a jako N,N = (T,N )J‘ (wzgledem standardowego iloczynu skalarnego).
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I Uwaga. Jesli N jest podrozmaitoscia rzeczywista, to Cy, (N) = T, N, wiec N,N = N, (N).

26. Ekstrema warunkowe 2026-01-12

Definicja 55. Niech (X,7) bedzie przestrzenia topologiczng. Rozwazamy funkcje f : X — R i
Y C X. Ekstrema funkcji f|y nazywamy ekstremami warunkowymi na zbiorze Y.

Uwaga. Najlepiej bada sie sytuacje, gdy X = R™ a Y C R™ jest podzbiorem ,regularnym”, np.
podrozmaitoscia (przynajmniej kawatkami).

Przyktad (Programowanie liniowe). Niech f (z) = (c,x) bedzie forma liniowa R™ — R. Niech Y =
{z e R™ : (a;,x) <b;,i =1,...,n}. Mozna pokazac, ze jesli f|y osiaga minimum, to osiaga je na
OvY, gdzie V jest otoczka afiniczna Y (najmniejsza przestrzenia afiniczna zawierajaca Y'). Ponadto
jesli f|y ma minimum lokalne w a, to jest to minimum globalne, co w tym wypadku jest rownowazne
—c € N, (Y).

Twierdzenie 59 (Silny warunek konieczny). Niech f : A — R bedzie n-krotnie roézniczkowalna w
a € A CR™, gdzie m > 1, n > 2. Zaktadamy, ze d, f = 0,...7d<(1n_1)f =0.Niechae SCAi
f|s ma minimum (maksimum) lokalne w a. Wtedy dla kazdego v € C,, (S) zachodzi a f@">0
(odpowiednio < 0).

Dowdd. Wystarczy pokazaé teze dla minimum (dla maksimum rozwazamy funkcje —f). Ustalmy
C, (S) 2 v =1lim, e t, (a, — a). Niech h, = a, —a — 0. Z zalozenia f (a + h,) = f (a,) > f (a) dla
v> 1. Mamy 0 < f(a+h,) — f(a) = £ d £ ()" 41 (h) |h|™. Zatem 0 < 2d5" f (t,h,) +
0 (ho) ok " = 3 ¥ f (). 0

Uwaga. W rozwazanej sytuacji rozniczka funkcji utozsamia sie z gradientem, czyli kierunkiem naj-
szybszego wzrostu funkcji. Ponadto jesli Vf (a) # 0, to (f~(f (a)),a) jest kielkiem C'-gladkie;
hiperpowierzchni, do ktoérej V f (a) jest prostopadly w a.

Uwaga. Jesli w poprzednim twierdzeniu S jest podrozmaitoscia klasy C*, to otrzymujemy informa-
cje, ze forma jednorodna 7,5 > v — am f ()" € R jest nieujemna (niedodatnia).

Twierdzenie 60 (Staby warunek konieczny). Niech f : A — R bedzie rozniczkowalna w a € A C R™
ia€e N C A, gdzie N C R™ jest podrozmaitoscia klasy C!. Zaktadamy, ze f|x ma w a ekstremum
lokalne. Wtedy d, f|r,n = 0.

Dowdd. Ustalmy lokalng parametryzacje g : G — V N N. Wowczas f o g ma ekstremum lokalne w
7' (a) € G, a ze jest to funkcja rozniczkowalna, to mamy warunek konieczny 0 = dg—1(q) (f 0 g) =
dy fodg-1(4) 9. To oznacza, ze d, f (Im dg-1(a) g) =0, a ten zbiér to T, N. O

Uwaga. Powyzsze twierdzenie nie zachodzi, gdy zbiér jest osobliwy i mamy do dyspozycji tylko
stozek styczny. Niech S : y? = z3. Wtedy C(0,0)S = [0,+00) x {0}. f(2,y) =  ma minimum w
(0,0), ale d(g,0) f = f, co nie znika na stozku stycznym.

Uwaga. N : y = 2° jest podrozmaitoscia R?, f (z,y) = y — 2® + x* ograniczamy do f|y = %, co
ma minimum w a = (0,0). Mamy d, f = {O 1] # 0, ale na T,N = R x {0} si¢ zeruje, d> f = 0.
Forma % d3 f. (x, 0)3 = —23 nie jest nieujemna. Wynika to z faktu, ze pierwsza pochodna nie zeruje
wszedzie.

Uwaga. Mamy N,N = (TaN)J‘ = Lin{Vh;(a):j=1,...,m —n}, gdzie h jest submersja opisu-
jaca. Zatem d, flr, N = 0 jest rownowazne Vf (a) € NN, a wigc Vf (a) = 375" A\;Vh; (a) dla
pewnych A1,..., Ap—pn € R zwanych mnoznikami (multipliers) Lagrange’a.
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Twierdzenie 61. Niech f : A — R bedzie n-krotnie rézniczkowalna w a € A C R™ dla m > 1,
n > 2. Zalozmy, ze dy f = 0,...,d" Y f=0ia€ S C Aoraz d f (v)" > 0 (odpowiednio < 0)
dlav € C, (S) \ {0}. Wtedy f|s ma w a silnie minimum (maksimum) lokalne.

Dowdd. Zakladamy nie wprost, ze f|s nie ma w ¢ minimum lokalnego, a wiec istnieje ciag niezero-
wych wektorow h,, — 0 taki, ze a+h, € S oraz f (a+ h,) < f (a). Wektory HZ—:H sg poprawnie okre-
$lone i lezg na zwartym S™ !, wiec ograniczajac sie do podciaggu mozna zatozyé, ze HZ—Z” —vesSr!
i wtedy v € C, (S)\ {0}. Mamy 0> f(a+hy,) — f(a) = & a™ f (hy)" +n (hy) [|h ", co po prze-

mnozeniu przez W i przejsciu do granicy daje % d,(ln) f ()" <0, co daje sprzecznosé. O

Uwaga. Jedli w poprzednim twierdzeniu zbiér S jest podrozmaitoscia klasy C!, to w zalozeniach
mamy dodatnio (ujemnie) okreslong forme jednorodng stopnia n T, N 3 v — am f)"eRr.

Propozycja 37. Niech f; : A — R dlai = 1,2 beda dwukrotnie rézniczkowalne w a € A C R™. Niech
N C R™ bedzie podrozmaitoscia klasy C! taka, ze a € N C A oraz fi|y = fo|ly i do f1 = d4 fo.
Wtedy d2 fla@.ny = d? Jala(r, Ny, gdzie A (T, N) oznacza przekatna.

Dowdd. Funkcja g = f1 — fa jest rozniczkowalna w a, mamy d, g = 01 g|n = 0, wiec ma ekstremum
w a (minimum i maksimum). Zatem T,N 3 v — d2g(v)® € R jest jednoczesnie niedodatnie i
nieujemne, czyli jest zerowe. O

Pomyst. Majac a € N € A C R™, gdzie N jest podrozmaitoscia klasy Claf : A — R jest dwu-
krotnie rézniczkowalna w a szukamy modyfikacji f takiej, ze f|ny = f|n, ale d, f = 0. Pokazalismy
juz, ze niezaleznie od wyboru f forma zadana druga rézniczka nie zmienia sie.

Przyktad. Niech f bedzie rézniczkowalna w calym 2. F' bedzie funkcja Lagrange’a (skojarzona z
f) zadana przez F : Q x R™™" 3 (z,A) — f(x) — 275" A\jhy () € R. F jest rozniczkowalna i
VF (z,\) = [Vf (@) = 275" MVh; —h (x)} Ten gradient jest zerowy doktadnie, gdy Vf (x) =

Z;:ln AjVh;(z) i h(z) = 0, a wiec dokladnie, gdy « € N i d; flr,y = 0. Zatem zera VF
wyznaczaja wszystkie punkty N, w ktorych f|y moze mieé¢ ekstremum lokalne.

Ustalmy punkt E,X taki, ze VF (EE, X) = 0. Rozwazmy funkcje rézniczkowalng f A
F (x,X) € R. Oczywiscie fly = f|n (bo N = h=1(0)). Ponadto dz f = dz f — X.75" A; dz h; = 0.

=

Jezeli h i f sa dwukrotnie rézniczkowalne (przynajmniej) w znalezionym punkcie Z, to mozemy
2 . 3 2 o~ -ny 2p . . o

zbada¢ macierz Hesse’'go B = [ o f (@)= >" n)\j% (x)] na TN, czyli forme

9z, 0z, j=1 ik=1,....,m
kwadratowa 73N > v — v Bv € R. Wykorzysta¢ mozemy dodatkowo lokalng parametryzacje
g:G — VNN. Zachodzi Tz N = Imdg-1(3) g, a wiec oznaczajac macierz C = dg-1(z) g mamy do
zbadania forme kwadratowg R" > w — (Cw)T B(Cw) € R, a wigc WT (CT BC) w. Ta macierz jest
symetryczna, a wiec dysponujemy kryteriami dodatniej (ujemnej) okreslonosci.

Jezeli f jest wiecej razy rozniczkowalna a d? fznika na A (TQN ) to podobg@ metoda mozna otrzymac

wielomiany pierwszego stopnia dajace dalsza modyfikacje ftakad, ze d2 f: 0.

27. Uzupelnienie

Definicja 56. Odwzorowanie r : X — X, gdzie X jest przestrzenia topologiczna, nazywamy retrak-
cja, gdy jest ciagle oraz ror =r.

I Propozycja 38. ror =r <= 7| (x) = id|.(x)-

Propozycja 39. Niech V' bedzie przestrzenia wektorowa a ¢ : V. — V odwzorowaniem liniowym.
Wtedy £ o £ = ¢ wtedy i tylko wtedy, gdy ker £ = Im (¢ — idy/).
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Dowéd. (= )z €kerl <= {((2)=0 <= xz=a—L(z) =4 (—x) — (—z) € Im (£ —idy).
(«<=)l(z)—zvckerd = L({(x))—L(x)=0. O

Twierdzenie 62 (O retrakcji). Niech D C K™ bedzie obszarem, r : D — D retrakcja klasy C* dla
k € Ny U{oo,w}. W takiej sytuacji r (D) jest domknieta i spojna podrozmaitoscia klasy C* obszaru
D.

Dowéd. r (D) = {x € D : r () = x} jest spojny z twierdzenia Darboux i domkniety z wtasnosci Tb.
Rézniczkujac ror = r mamy d,. ;) rod, r = d, r. Wobec r () = x mamy ker d, r = Im (d, r — idgm ).
Ale m = dimkerd, r + dimImd, r = dimIm (d, r — idgm ) + dimImd, r = rg (r — id) () + rgr (z).
Rzad jest poélciagly z dolu — w otoczeniu moze tylko wzrosnaé. Wobec statosci poprzedniej sumy
oba jej sktadniki musza by¢ state, a wiec dla kazdego a € r (D) istnieje otoczenie U, 3 a w D takie,
ze dla wszystkich « € U, Nr (D) jest rgr = const. Wobec spojnosci r (D) dostajemy, ze rzad r jest
staty na catym r (D).

rg(ror)(xz) < rgr(r(z)) = const = (, dla wszystkich r () € U, Nr (D). Z ciagloci istnieje V,
takie, ze r(V,) C U,. Czyli dla € V, mamy rgr (z) < rgr(a). Z polciaglosci z dotu mamy
a € W, CV, takie, ze dla x € W, jest rgr (z) = rgr (a). Ze spéjnosci r (D) mamy stalosé rzedu na
U= UaEr(D) Wa.

Stosujac twierdzenie o rzedzie mamy worow (x1,...,Ty) = (21,...,24,0,...,0), co oznacza, ze u
jest dyfeomorfizmem prostujacym r (D). O

Lemat 8 (Nash; 1952). Niech ) # N C R™ bedzie podrozmaitoécia klasy C* dla k > 2. Ist-
nieje otoczenie N C U takie, ze dla kazdego x € U istnieje dokladnie jeden m (z) € N taki, ze
|z —m (z)|| = d(z, N) oraz funkcja U > 2 — m (z) € R™ jest klasy C*¥~1 (do tego mozna wybraé
U domkniete).

Dowéd. Dla a € N, r > 0 i kazdego « € B (a,r) istnieje N € N N B (a,2r) takie, ze d(z,N) =
|z — 2|, czyli d (x, N) = d (z, NN B (a,2r)).

Dla x € R™, z € N takich, ze ||z — z|| = d(x, N) wiemy, ze © — z € N,N. Rozwazmy lokalna pa-
rametryzacje g : (G,0) — (N NV, a) klasy C*. Mamy T,;) N = Imd; g = Lin {%}1 t),..., 2% (t)}

’ Oty
n
Wprowadzamy F' : V x G > (z,t) — (<x —g(t), % (t)>) € R”, ktore jest klasy C*~'. Mamy
i i=1

F(2,t) =0 <= z—g(t) € Ny4)N. Mozemy przyjac, ze V = B(a,2r) i NNV jest domknigte w
V.

Dla z € B (a,r) znajdziemy t € G takie, ze g (t) € N NV realizuje d (z, N). Wtedy F (x,t) = 0.
2
Ponadto F (a,0) = 0. Mamy % (a,0) = (=1)" Y1 . i <m <det ﬁ (0)> #0.

Z twierdzenia o funkcji uwiktanej mamy otoczenie (a,0) € W x T' C B (a,2r) x G takie, ze istnieje
7:W 32— 7(x) €T klasy C*~! takie, ze F (z,t) =0 <= t = 7 (). Dobieramy r, > 0 tak,
by B(a,2r,) "N C WNg(T). Wtedy dla € B (a,r,) istnieje y € B(a,2r,) "N C Wng(T)
realizujace d (x, N) i wowczas F (z,gfl (y)) =0, czyliy = g (7 (2)).

Okreslamy m, (z) = g (7 (2)), U = Uuen B (a,74), a odpowiednie funkcje sklejaja si¢ dzigki jedno-
znacznosci z twierdzenia o funkeji uwiktane;j. O

Twierdzenie 63 (Poly, Roby; 1984). Niech ) # X = X C R™, §x (z) = d (z, X)?, k > 2. Definiujemy
zbiér punktéow regularnych klasy C* jako

Reg, X = {a € X : (X,a) jest kietkiem podrozmaitosci klasy C*} .

Zachodzi Reg, X = {x € R™: Jys, Ox|u jest klasy Ck} Nnx.

Definicja 57. Dla ) # X = X C R™ oznaczamy mx (z) = {z € X : ||z — z|| = d (x, X)}. Szkieletem
zbioru X (medial axis) nazywamy Mx = {x € R™ : |mx (z)| > 1}.
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Twierdzenie 64 (Clarke; 1975). Niech ) # X = X C R™, éx (z) = d(z,X)*. Mx jest réwny
zbiorowi punktéw nierézniczkowalnosci funkeji dx .

Uwaga. d (z, X) jest 1-lipschitzowska, wiec dx jest lokalnie lipschitzowska, co z twierdzenia Rade-
machera méwi nam, ze dx jest rozniczkowalna prawie wszedzie (wzgledem miary Lebesgue’a).
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