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1. Podstawowe definicje

n=1
definicje wprowadzamy dla innych operacji teoriomnogosciowych.
Definicja 2. Mowimy, ze F C P (X) jest o-algebra, jesli
1. X e F,
2. Ae F = A e F,
3. F jest o-U-stabilna.

Przyktad. o-algebrami sa:
1. F={0,X},
2. F=P(X),
3. F={A C X : A przeliczalny V A€ przeliczalny},
4. Jedli G C P (Y) jest o-algebra i T : X — Y, to T~ (G) jest o-algebra.
5. Jesli F jest o-algebrana X i A C X, to F4 = {ANDB: B € F} jest o-algebra.

I Propozycja 1. Przeciecie dowolnej niepustej rodziny o-algebr na X jest o-algebra.

Przyktad. 1. Jesli € jest o-algebra, to o () = €.
2. Jesli AC X, to o ({A}) = {0, A, A, X }.

Propozycja 2. Jesli F jest o-algebra, to:
1. 0 F,
2. F jest o-N-stabilna,
3. F jest U,N, \-stabilna.
Dowéd. 1. f = X¢,
2. (An)ply C©F = Moli4n = (Unl A7) € F,
3. ABe F = AUuN)BU(N)ObuU((N)OuU(N)...e F, AA\B=ANDB°e F.

Definicja 4. Rodzine R C P (X) nazywamy pierscieniem, jesli
1. D eR,
2. R jest U, \-stabilna.

Propozycja 3. Kazdy pierscien jest N-stabilny.
Dowdd. ANB=(AUB)\ ((A\ B)U(B\ A)).

Definicja 5. Algebra nazywamy taki pierscien A, ze X € A.

Definicja 1. Niech X bedzie niepustym zbiorem. Mowimy, ze rodzina F C P (X) jest (o-)N-stabilna,
jesli ABeF = ANBe F (wwersjio: (4,),2, CF = (.2, A, € F). Analogiczne

Definicja 3. Niech £ C P (X). o-algebra generowana przez £ nazywamy najmniejsza (w sensie
inkluzji) o-algebre zawierajaca £. Wprowadzamy na nig oznaczenie o (£) = (\gc £ - JFa

3. Dla Fin (X) ={B C X : |B] < Xo} mamy o (Fin (X)) ={F C X : |F| <Ny V |F°¢ < Xg}.

1. Podstawowe definicje

Strona 2/27

2025-10-06



Miara i Calka Maciej Mikotajczak

Przykfad. 1. Kazda o-algebra jest algebra,
2. {F C X :|F| <Xy V|F° < RXg} jest algebra, ktora nie jest o-algebra dla | X| > Ry,
3. Fin (X) jest pierscieniem, ktory nie jest algebrg dla | X| = co.
4. {0} to pierscien.

Propozycja 4. R jest algebra wtedy i tylko wtedy, gdy X € R oraz R jest U-stabilne i zamkniete
na branie dopelnieni.

Dowéd. (= ) Mamy X € R, wiec dla A € R jest A° = X\ A € R, pozostale warunki sa oczywiste.
(<=)Mamy ) = X¢ € R,dla A,B€ R jest A\ B=ANB®=(A°UB)" € R. O

Uwaga. Kazdy pierscien jest A-stabilny (gdzie A to réznica symetryczna). Krotka (R, A, N) jest
pier$cieniem w sensie algebraicznym.

Definicja 6. D C P (X) nazywamy uktadem Dynkina, jesli
1. X eD,
2. Ae D = A €D,

3. D jest o-U-stabilna (zamkniecie na przeliczalne sumy roztacznych zbiorow).

Uwaga. Zamkniecie na dopelnienia w powyzszej definicji mozna zastapi¢ zamknieciem na réznice:
dla A, B € D takich, ze A C B zachodzi B\ A € D. Przy X € D zamkniecie na dopelnienia z niej
wynika, a mamy B\ A = BN A¢ = (B°UA), i B°N A = (), wigc z ostatniego warunku mamy
zamkniecie na réznice przy zamknieciu na dopelnienia.

Przyktad. 1. Kazda o-algebra jest ukladem Dynkina,

2. Dla | X| = 2n rodzina Peyen (X) = {A C X : 2 | |A|} jest uktadem Dynkina, ale dla n > 1 nie
jest algebra.

Definicja 7. Niech £ C P (X). Przez ¢ (£) oznaczamy najmniejszy uklad Dynkina zawierajacy &, a
przez « (€) najmniejsza algebre zawierajaca €.

Twierdzenie 1. Uktad Dynkina D jest o-algebra wtedy i tylko wtedy, gdy jest U-stabilny (réwno-
waznie: N-stabilny lub jest algebra).

Dowéd. ( = ) o-algebra jest U-stabilna.
(<) Niech (4,,)2°, C D. Oznaczmy D,, = A, \ Ur—}' 4. Mamy (22, D,, = | >>, A, oraz D,

sa parami rozlaczne. Do tego D, € D, bo U-stabilno$¢ i zamknietos¢ na dopelnienia daje nam
zamknietosé na branie (dowolnych) réznic. Zatem |J,—; D, € D, co koriczy dowod. O

Twierdzenie 2. Jesli £ C P (X) jest N-stabilna, to § (£) = o ().

Dowéd. Mamy 6 (£) C o (£), bo kazda o-algebra jest uktadem Dynkina. Dla dowodu drugiej inkluzji
wystarczy pokazaé, ze 6 (£) jest N-stabilna.

Dla kazdego D € ¢ (&) definiujemy Dp = {Q C X :QND €§(E)}. Dp jest ukladem Dynkina:

mamy X € Dp, jesli A,B € Dp oraz AC B, to (B\A)NC = (BNC)\(ANC) € §(E). Na koniec
(UA4,)ND = (A, N D), coimplikuje ostatni warunek z definicji uktadu Dynkina.

Dla kazdego E € £ mamy £ C Dg (wynika z zalozenia twierdzenia), wiec § () C Dpg. Z tego
wynika, ze dla kazdego D € § (£) mamy DNE € §(€), czyli E € Dp, wiec E CDpid(E) C Dp
dla dowolnego D. To koiiczy dowdd. O

2. Miary i premiary 2025-10-13
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Definicja 8. Niech A C P (X). Dowolna funkcje p : A — [0, 0o] nazywamy funkcja zbioru.

1 jest skoriczenie addytywna, jesli dla dowolnych parami rozlacznych A;,..., A, € A takich, ze
AU . UA, € Amamy p (Ul 4i) =Y i 1 (A).

p jest przeliczalnie addytywna, jesli dla rodziny parami rozlacznych zbioréw (A4,);-, C A takich,
ze Uzo:1 An € A mamy p (UZO:1 Ap) = 220:1 p(An).
Uwaga. Jedli i jest przeliczalnie addytywna i @ € A, to u jest skonczenie addytywna.
Jesli) € Aip 2 oo, to u(0) =0, bodla A € A takiego, ze u(A4) < oo mamy p(A) = p(AUQ) =
11 (A) + p (0), czyli p (0) = 0.
Definicja 9. Mowimy, ze u: R — [0, 00] jest:

e premiarg, jesli R jest pierscieniem, p (0)) = 0 i p jest przeliczalnie addytywna,

e premiarg skoriczenie addytywna (trescia), jesli R jest pierScieniem, p () = 01 p jest skoriczenie
addytywna,

e miara, jesli p jest premiara i R jest o-algebra,

e miarg skoriczenie addytywna, jesli u jest premiarg skoriczenie addytywna i R jest algebra.

1, z€A

jest miarg.
0, z¢ A ) 2

Przykfad. Przy R = P (X) dla ustalonego = € X delta Diraca J, (A) = {

Definicja 10. Pare (X,.A) nazywamy przestrzenia mierzalna, jesli A jest o-algebra nad X. Trojke
(X, A, ) nazywamy dodatkowo przestrzenia z miara, jesli u : A — [0, 00] jest miara.

Przestrzen z miara jest:
e skoniczona, jesli p (X) < oo,
e o-skonczona, jesli istnieje taka rodzina (A,) ", ze p(A4,) <ocoilJA4, =X,
e probabilistyczna, jesli p (X) = 1.
Przyktad. 1. Jesli A C B jest pod-o-algebra a (X, B, i) jest przestrzenia z miara, to (X, A, u|a)
jest przestrzenia z miara.

2. Jesli Y C X, to (Y, By, u|s, ) jest przestrzenia z miara.

0, |EI<N
3. Jesli X =R, A={ECR:|E| <NV I|E| <No}, tou(E)=1 "’ IE] < Ro jest miara.
]-a ‘EC| S NO
E| <N
4. Jesli X = N, A= {ECN:|E|<XyV|E°| <N}, to u(F) = {(1)’ :E|c|<<?2 jest miarg
) 0

skoniczenie addytywna.

5. Dla statych «,, > 0 i miar p, funkcja > o, jest miara.

Propozycja 5. Kazda skoriczenie addytywna premiara na pierscieniu R spelnia:
I Va.per #(AUB) +u(ANB) = u(A) + u(B),
2. Vaper ACB = u(A) < p(B),
3. Vaper AC B, u(B) <oo = p(B\A)=pu(B)—pu4),
4. Vay, aner (Ui Ai) < 3550 1 (4),
5. Dla kazdej rodziny zbiorow parami roztacznych (A,).~, C R takiej, ze |J A,, € R zachodzi

p(UAn) >3 u(Ay).
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Dowéd. 1. Mamy p(A) = p(A\B) +p(ANB), u(B) = u(B\A) +p(ANB), u(AUB) =
4(A\B)+ 5 (B\ A) + (AN B)
2. p(B) = p(A) +pu(B\A) = pu(A).
3. 7Z poprzedniego.
4 Dla B; = A\ U'ZL Ay mamy Uy An) = s (Uy Be) = S0y 6 (Be) < S0y 0 ().
5. Mamy SN 1 (4,) = p (Uszl An) < p (U, An). Przejscie N — oo daje teze.
O

Definicja 11. Méwimy, ze ciag zbioréw (E,,)~, zbiega od dotu do E (co oznaczamy E, /' E), jesli
Ey C B, C...i,_, E, = E. Podobnie ciag zbiega od gory do E (oznaczenie E, \, E), jesli
Ei12ED...i(,_,E,.=E.

Twierdzenie 3. Dla premiary skonczenie addytywnej na pierscieniu R rozwazmy nastepujace wa-
runki:

1. p jest premiara.

2. JesliVp>1 Ap €R, AeRi1 A, NA, tou(Ay) — p(A).

3. JedliVy>1 A, € R, A€ER, Ty 1(Apy) <ooi Ay (A, top(A4,) — pn(A).

4. Jedli Vi>1 Ay €R, Tng p(Ang) <01 A, (0, to u(4,) — 0.
Woweczas zachodzi [(1) <= (2)] = [(3) < (4)]. Dodatkowo jesli p jest skonczona na R
(zawsze przyjmuje skoniczone wartosci), to wszystkie warunki sa rownowazne.
Dowéd. (1 = 2) Niech 4g =0, B, = 4, \ A,_1 dlan > 1. Zbiory B,, € R sa parami rozlaczne
i sumuja si¢ do A oraz A, = By U...U B,. Mamy

o) 00 N
p(A)=p (U Bn> = n(Bu) = lim > p(By)= lim p(BiU...UBy) = lim pu(Ay).

N—o0
n=1

(2 = 1) Wezmy rodzine (A, ),-, parami rozlacznych zbioréw taka, ze A = Jo-, A, € R. Wtedy
dla B, = A1 U...UA, mamy B,, € Ri B, /" A. Zatem u(B,) = Z?:1 1 (A;) jednoczesnie zbiega
o 1 (4) 1 352, 1 (4y).

(2 = 3) Bez straty ogolnosci ng = 1. Wtedy p (A1 \ 4,) = p (A1) — p(Ay). Dodatkowo A, \, A
implikuje 41 \ 4,, /" A1\ A. Zatem p (A1 \ Ap) = (A1 \A) = p (A1) — p(A) oraz (41 \ An) —
12 (Al) —limy, o0 p (An)

(3 = 4) Oczywiste.

(4 = 3) Mamy An\A\®7 wigc /J(An> _M(A> :M<An\A) — 0.

(4 = 2)7Z A, /" A dostajemy A\ A, 0, ze skoriczonosci p spelnione sg zalozenia (4) i mamy
p(A) = p(An) = p(A\ Ay) — 0. O

Twierdzenie 4 (O jedynosci miary). Niech A bedzie o-algebra na X generowang przez taka N-stabilng
rodzine G, ze istnieje ciag (G,),—, C G taki, ze G,, /* X (taki ciag nazywamy wyczerpujacym).
Jezeli p, v s takimi miarami na (X, A), ze Vacg p(A) = v (A) oraz Vp>1 1 (Gr) = v (Gr) < 00, to
w=u.

Jezeli 4 (X) = v (X) < o0, to zalozenie o istnieniu odpowiedniego ciagu mozna opuscié (bo wowczas
G, = X dziala).

Dowdd. Niech D,, = {A€e A: u(G,NA) =v(G,NA)}. Mamy G C D,, dla kazdego n, bo G jest
N-stabilna. Sprawdzimy, ze D,, jest uktadem Dynkina.
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X € D, jest oczywiste, jesli A € D, to
(G NAS) =p (G \A) = p(Gr) — (G NA) =v(G,) —v(G,NA)=...=v (G, NA°).
Ustalmy parami roztaczne (Ay);—, C D,,. Mamy

M(GnﬂDAk>=u<|jGnﬂAk>=oou ﬂAk :iy ﬂAk —V(G ﬂ|_|Ak>
k=1

k=1 k=1 k=1 k=1

Zatem D, jest uktadem Dynkina i A =0(G) =06(G) C D, C A, wiec D,, = Aipu(ANG,) =
v(ANG,) dla kazdegoni A € A. Mamy ANG,, A, wiec

w(Ad)=lim p(ANG,) = lim v(ANG,)=v(4).

n—oo n—roo

3. Konstrukcja Carathéodory’ego
2025-10-20

Definicja 12. § C P (X) nazywamy pOlpierscieniem na X, jesli
1. 0 es,
2. S jest N-stabilna,

3. Dla A, B € S zbior A\ B jest suma rozlaczng skoriczenie wielu elementow S.

Przyktad. 1. J={la,b): a,b € R} jest polpierscieniem na R.
2. Jesli (X, A), (Y, B) sa przestrzeniami mierzalnymi, to {A x BC X xY : A € A, B € B} jest

polpierscieniem.
Definicja 13. Funkcje A : P (X) — [0, 0o] nazywamy miara zewnetrzna, jesli
1. AX(®)=0
2. Jesli A C B C X, to A(A) < \(B),
3. Jesli (A,)2, CP(X), to AU, 2, An) < D07 A (An).

Propozycja 6. Jezeli v jest premiara na polpierscieniu S C P (X), to

k=1 k=1

jest miara zewnetrzna taka, ze u*|s = v.

Dowdd. Niech S € S. Wtedy mamy p* (S) < v (S)+v(0)+... =v(S). Z drugiej strony rozwazmy
dowolne (Si)re, C S takie, ze S C (Jge; Sk- Mamy S = |J;—; SN Sy i kazde SN Sy jest elementem
S. Definiujemy rodzine roztacznych zbioréw poprzez D; = SN Sy, Dy = (SN S3) \ S1, D3 =
((SNS3)\ S2)\S1 itak dalej. Kazdy z tych zbiorow jest suma roztaczng skonczenie wielu elementow
S. Zatem mamy S = | |°_, B,, dla pewnych rozlacznych B,, € S.

Dla kazdego By, istnieje takie Sy(m), 2¢ By C Sg(m). Zauwazmy, ze Sk \ Um:k(m):k B,,, jest suma
rozlaczna elementow (Ei)f:1 C S. Wobec tego v (Sk) = Zle V(Ei) + X mkimy=k ¥ (Bm), czyli
Zm:k(m):k V(Bm) < V(Sk)

Mamy v (S) = 3570, v (Bm) = 22021 X mk(m)=k ¥ (Bm) < 242, Sk. Biorac infimum dostajemy
v(S) < p*(9). To dowodzi, ze pu*|s = v ip* (@) = 0

Jesli A C B, to dla kazdego (Sk)pe; C S takiego, ze B C |J;—; Sk, mamy tez A C (Jro; Sk
Wobec tego u* (A) < u* (B). Pozostalo pokazaé o-subaddytywnosé. Niech (4,)72, C S. Niech

n=1
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(Sn,k)pey © S bedzie pokryciem A,,. Wtedy (Snx), —; Pokrywa (A,),2;, a wiee p* (UpZ; 4n) <
oo > pe v (Spk). Biorac infimum dla kazdego k dostajemy p* ()~ An) < > ooe w* (4,). O

Definicja 14. Niech A bedzie miara zewnetrzna. Moéwimy, ze A C X spelnia warunek Carathéo-
dory’ego, jesli dla kazdego @ C X mamy A (QNA)+ A (Q\ 4) =X (Q).

Uwaga. Z subaddytywnosci miary zewnetrznej zawsze jest A (Q) < A(QNA)+ A (Q\ A). Do tego
dla A (Q) = oo druga nieréwnosé tez zawsze zachodzi. Zatem warunek Carathéodory’ego jest row-
nowazny temu, ze dla kazdego @ C X takiego, ze A (@) < oo mamy A(Q) > A(QNA)+ A (Q\ A).

Propozycja 7. Niech A bedzie miara zewnetrzna. Rodzina
A={AC X : A spelnia warunek Carathéodory’ego}

jest o-algebra taka, ze A| 4 jest miara. Zbior A (\) nazywamy o-algebra zbior6w A-mierzalnych.

Dowod. Oczywiscie § € A. Zapisujac A(QNA) + A (Q\A) = A(QNA)+ X(QnN A°) widzimy, ze
A jest zamknieta na branie dopelnien. Ustalmy A, B € A. Zachodzi ponizsza rownosé.

AQ)=2QNA)FANQNA)=AQNANB)+A(QNANB)+A(QNANB)+A(QNA“NB°)
Podstawiajac pod @ zbior @ N (AU B) dostajemy
AMQN(AUB))=AQNANB)+AX(QNA°NB)+ X (QNANBY,

czyli A (Q) = A (QN(AUB))+ X (QN(AUB)), wiec AUB € A.

Zalozmy, ze AN B = 0. Wtedy A(QN(AUB)) = X(QNA)+X(Q@NB),bo A° C Bi B C A
Indukcyjnie dla rodziny roztacznych zbiorow {A,},_; mamy A (Q N[ I7_; Ax) = > 11 A (Q N Ag).

Niech (A,).~, C A bedzie rodzing rozlacznych zbiorow. Niech B, = | |}_, Ay. Oznaczmy A =

n=

LI, A, =U,—, Bn. Mamy B,, € A, wiec

n=1

AQ)=X(QNB,) +A(QNBE) ZAQmAk)Jr)\QﬂBC Z (QNAR) +A(QN A%,

k=1

gdzie nieré6wnos¢ to monotonicznosé A. Przechodzac n — oo dostajemy

Q)>iA(QﬂAk)+A(QmAC)>)\<Qm DAk> FAQNA)=A(QNA)+X(QnN A,
k=1

k=1

gdzie druga nieré6wno$é¢ to o-subaddytywno$¢ A. Z uwagi do warunku Carathéodory’ego mamy
AQ) = A (QNA)+ X (QnN A°). Widzimy wiec, ze A € A. Zatem A jest zamknietym na sumy
uktadem Dynkina, czyli o-algebra.

Dodatkowo poprzednia réwnos¢ implikuje A (Q N A) + A (Q NA) =372, A (Q N Ag) + A (Q N A9),
wiec mamy przeliczalng addytywnosé |4 (podstawiajac Q = X). W szczegolnosci A| 4 jest miara.
0

Twierdzenie 5 (Carathéodory). Jezeli v jest premiara na pélpierécieniu S C P (X), to istnieje taka
miara p na o (S), ze p|ls = v. Jezeli istnieje taki ciag (S,)—, € S, ze S, /' X iv(S,) < < dla
kazdego n > 1, to u jest jedyna.

n=1 =

Dowdd. Zdefiniujmy miare zewnetrzna

u*(A):inf{iu(Sk) (SK)2, CS,AC Usk}

k=1 k=1

oraz o-algebre A zbiorow spetniajacych warunek Carathéodory’ego. Wystarczy pokaza¢ S C A, bo
wtedy o (S) C A i funkcja p1*|,(s) jest miarg zgodna z v. Jej jedynosé¢ wynika wprost z twierdzenia
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o jedyno$ci miary.

Ustalmy A € S i wybierzmy dowolne Q C X. Mozemy zalozyé, ze u* (Q) < oo. Zatem dla kazdego
e > 0 istnieje takie (Qn)re; €S, 26 Q CUre 1 Qnip* (Q)+e>> 0" v (Qn). Mamy ANQ, €8
oraz Qn \ A jest skoniczong suma rozlaczng elementow S, czyli v (Q,) = v (AN Qn)+ Zfiq) v (Bp,),
gdzie {an}fiq) sg roztaczne i Uf;q) By = Qy, \ A. Zatem

Q2> v(Q) = v(ANQ)+ Y v (Bui) 21" (@NA)+ 4" @\ 4),

gdzie ostatnia nier6wnosé¢ wynika z faktu, ze QNAC o, Q, NAoraz Q\ AC U, _, Ufg) By, ;.
Zatem A spelnia warunek Carathéodory’ego (przechodzimy e — 0), czyli S C A, co koriczy. O

Definicja 15. Niech (X, A, i) bedzie przestrzenia z miara. Dla kazdego A C X definiujemy p° (A) =
inf {u(B): AC B,B € A}, co jest miara zewnetrzna.

Definicja 16. Miare zewnetrzna p* na X nazywamy regularng, jesli dla kazdego Y C X istnieje
takie A € A(p*), 2 Y CAip*(Y)=pu*(A).

Propozycja 8. Jezeli (X, A, 1) jest przestrzenia z miara, to u® jest regularna. Mamy u°|4 = p i
AC A ().

Dowéd. Z monotonicznosci miary natychmiast mamy p°|4 = p. Ustalmy E € A i wybierzmy
dowolne T' C X. Dla kazdego A € A takiego, ze T C A mamy u(A) = p(ANE)+ pu(A\E) >
pl (TNE)+ pl (T \ E). Biorac infimum po wszystkich A O T dostajemy u° (T) > p° (TN E) +
p? (T'\ E), czyli E spelnia warunek Carathéodory’ego i A C A (u°). Pozostalo pokazac regularnosé.
Ustalmy dowolne Y C X. Jesli u° (V) = oo, to musi byé¢ p° (X) = oo, wiec u° (V) = u° (X). Dalej
zakladamy 1% (Y) < co. Dla kazdego n € Ny znajdziemy takie A, € A, ze p(A,) < p°(Y)+ 2
oraz Y C A,. Wtedy A=\_, A, € Aoraz Y C A. Teraz

po (Y) < p(A) = lim p (ﬂ Ai) < lim p(A,) < p®(Y).

n— 00
=1
O

Definicja 17. Oznaczmy A = {a : P (X) — (0, 00] : « jest miara zewnetrzng na X } oraz niech A =
{(A, 1) : (X, A, 1) jest przestrzenig z miarg}. Definiujemy (-), : A 5 a = (A(a),a.) € A, gdzie
Qe = 0 g(a) Oraz (VA (Ap) —pleA.

Twierdzenie 6. Dla kazdego o € A mamy (ozc)0 = «a wtedy i tylko wtedy, gdy « jest regularna.

Dla kazdego (-, 1) € A mamy ((uo)c)o = p°. Dla kazdego (-, ) € A mamy (,uo)c = p wtedy i tylko
wtedy, gdy istnieje regularna v € A z v, = p.

4. Miara Lebesgue’a

2025-10-27
Definicja 18. Niech d > 1. Dla dwéch elementéw a = (ay, . ..,aq),b = (by,...,bq) € R? definiujemy
[a,b) = []% [aj, b;). Oznaczmy 1% = {[a,b) CR?: a,b € R%}.

Jj=1

Lemat 1. Jesli S C P (X) i S C P (Y) sa polpierscieniami, to S x &' = {Sx 5" :5€ 8,5 €S8’}
jest polpierscieniem na X x Y.

Dowéd. Mamy ) = 0 x 0 € S x 8. Jesli Ax A/,Bx B € §x8, to (AxA)Nn(BxB) =

4. Miara Lebesgue’a Strona 8/27



Miara i Calka Maciej Mikotajczak

(ANB) x (A/NB') e S xS Do tego

(Ax A\ (BxB')=((A\B) x (A'\ B'))U((ANB) x (A"\ B')) U((A\ B) x (A'nB')).
Mamy A\ B = Ule C; oraz A\ B' = |_|§:1 D;, gdzie {C’i}le cS, {Dj}ﬁzl C S8’ sa rodzinami roz-
tacznych zbiorow. Kazdy ze sktadnikow, na ktore rozbilismy (A x A’)\ (B x B’) jest wiec roztaczna
suma elementow S x &', co koriczy dowdd. O
Lemat 2. I jest polpierscieniem.

Dowéd. Dla d > 2 mamy I¢ = [9! x I!, wiec wystarczy pokazaé teze dla I'. Mamy @ = [1,1) € I*,
Dla a,b,a’,b' € R mamy [a,b) N [a’,V’) = [max (a,a’) ,min (b,b')) € I'. Do tego

[a,b), b<a' Vb <aVvd <a
! <a <b<¥
b /7b/ _ [a,a), a < <
LN =11y ), d<a<l<b
[

a,dYU[V,b), a<a <V <b

Definicja 19. Niech funkcja A\? : I¢ — [0, c0) bedzie dana wzorem

15, (bj —a;), la,b)

0, [a,b

[N

0
X (fa, b)) = { ”

Lemat 3. \? jest premiara na I¢.

Dowéd. Udowodnimy dla d = 1, wieksze wymiary to tylko techniczne uogoélnienie. Dla a < o’ <
b < b mamy A([a,0)) =V —a <V —d+b—a= )\([a b)) + A([a,b)). Uogdlniajac na wiecej
przedzialow, jesli [a,b) C ;- [a:, b;), to A([a, b)) < DS°0 A ([ai, bi)).

Zalozmy, ze [a,b) = || I, gdzie I, = [an,by). Zdeﬁn1u3my Ine = lan — 27", by) oraz I) | =
(an, — 27", b,). Mamy [a,b —¢) C [a,b—¢] C o2 To ostatnle jest pokryciem otwartym

zbioru zwartego, wiec istnieje N = N (¢) takie, ze [a,b —¢) C Un In . C Un 1 In e Teraz mamy

N
0<A( Z [an,br)) =€+ A([a,b—¢)) Z)\ B —|—Z—<25

gdzie pierwsza nieréwno$é wynika z podobnych wtasnosci A jak w pierwszym akapicie, a druga to
zastosowanie udowodnionej w nim wtasnosci. Ta nieréwnosé¢ zachodzi dla kazdego N > N (g), wiec
przechodzac N — oo a nastepnie € — 0 mamy teze. O

nlna

Definicja 20. d-wymiarowa miara Lebesgue’a na R? nazywamy miare A\? otrzymang w wyniku

zastosowania konstrukcji Carathéodory’ego do A? na I¢. Miara ta jest jedyna na o (]Id), bo mamy
o0

odpowiedni ciag (H = 1= n,n)) 2 R2. Zbiory A%-mierzalne nazywamy mierzalnymi w sensie

Lebesgue’a na R?. Zbior zbioréw A\%-mierzalnych oznaczamy £ ()\d).

Definicja 21. Niech 7 bedzie topologia na X. Zbior B(X) = o (7) nazywamy o-algebra zbiorow
borelowskich na (X, 7).

Lemat 4. Rodzina B (Rd) jest generowana przez kazda z nastepujacych rodzin zbioréow:
1. zbiory domkniete w RY,

2. zbiory zwarte w R,

3. 14,

4. Miara Lebesgue’a Strona 9/27
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4. {Q €l?: Q= [a,b),V;=1,..q aj,b; € Q}.

Dowéd. 1. o-algebry generowane odpowiednio przez zbiory otwarte i domkniete zawieraja ich
dopelienia, czyli odpowiednio zbiory domkniete i otwarte.

2. Kazdy zbior zwarty jest domkniety, a dla zbioru domknietego D zbior DN K (0,n) jest zwarty,
a suma takich zbioréw to D.

3. Mamy [a,b) = U;2[a,b — 1] oraz [a,b] = N;_;[a,b+ 1) i mozemy tak zrobi¢ na kazdej
wspotrzednej.
4. Mamy [a,b) = (po_; Upey[a@m, bn), gdzie ap, € (a — %, a), by € (b—1,b) i ap,b, € Q.
O

Uwaga. Mamy B (Rd) =0 (Hd) cA </\d0>. Zatem mozemy moéwi¢ o mierze A% zdefiniowanej na

B (Rd) poprzez rozszerzenie premiary zdefiniowanej na I%.

Lemat 5. Rodzina B (R) jest generowana przez kazda z nastepujacych rodzin zbiorow:
1. {(—o0,a):a € D},
2. {(—o0,a]:a € D'},
3. {[b,+0) :be D"},
4. {(b,+0):be D"},
gdzie D, D', D" D" C R sg geste.

Dowéd. Mamy (a,b) = (—00,b) N (—o0,a]’. Mozemy zapisa¢ (—00,b) = (),—,(—00,by,], gdzie
b, € (b,bJr %) N D' oraz (—oo,a] = U,—, (—00,a,), gdzie a, € (an — %,an) N D. W kazdym
z tych przeliczalnych przecie¢ i sum prawy kraniec moze byé zaréwno otwarty, jak i domkniety. W
zwiazku z tym (1) i (2) generuja przedzialy otwarte, a kazdy zbiér otwarty jest przeliczalng suma
przedzialow otwartych (przeliczalna, bo jesli dla kazdego ¢ € Q zawartego w zbiorze otwartym
wezmiemy maksymalny przedzial w nim zawarty zawierajacy ¢, to dostaniemy przeliczalng sume
przedziatow). Zatem (1) i (2) generuja przedzialy otwarte, a generowanie w druga strone jest proste.

(3) i (4) sa dopelnieniami (1) i (2). O

5. Miary zupelne
2025-11-03

Definicja 22. Mo6wimy, ze miara u jest miara zupelna na (X, .A), jesli dla kazdego A € A takiego,
ze 1 (A) = 0 mamy B € A dla kazdego B C A.

Twierdzenie 7. Jezeli (X G A ), ] A u*)) jest przestrzenig mierzalng otrzymang poprzez zastoso-
wanie konstrukeji Carathéodory’ego do miary zewnetrznej p*, to pu* jest zupela na A (u*).

Dowéd. Niech A C X bedzie taki, ze p* (A) = 0. Mamy p* (T'N A)+p* (TN A°) = 0+p* (TN A°) <
w* (T), gdzie oba przejscia wynikaja z monotonicznosci miary zewnetrznej. Zatem A spelnia warunek
Carathéodory’ego i A € A (u*). Do tego dla kazdego B C A mamy p* (B) = 0, wiec B € A (u*), co
daje teze. O
Definicja 23. Rodzing N' C P (X) nazywamy o-ideatem, jezeli

L. DeN.

2. Jesi AcNiBCA,to BEN.

3. Jezeli (Ayp),—y SN, to Uy An €N.
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Definicja 24. Niech (X, A, p) bedzie przestrzenig z miarg. Zbiér
N () ={BCX:34eapu(d)=0ABC A}

nazywamy o-idealem zbioréw miary zero.

Propozycja 9. NV (u) jest o-ideatem.

o0

Dowdd. Oczywiscie N (p) jest zamkniety na branie podzbiorow i ) € N (p). Jesli (By,),—; €N (p),
to istnieje ciag (A,) -, C Ataki, ze B, C A, ip(A,) =0. Mamy p(U;—; An) <> 0, 1(An) =0,
wiec Uy~ Br € N (). O

Definicja 25. Niech (X, A, p) bedzie przestrzenia z miara. Zbior
AL ={BC X :34ca AAB €N (1)}

nazywamy oc-algebrg zbioréw prawie nalezacych do A.

Propozycja 10. Aj, jest o-algebra.
Dowéd. Mamy OAD = ), wiec ) € Ay. Jesli B € Ay, to istnieje A € A takie, ze AAB € N (u).

Mamy A°AB® = AAB, wigc B¢ € A%. Jesli (By,),_, C A, to istnieje ciag (An),—; C A taki,

te AuABy € N (). Mamy (U2, An) 2 (U2 Ba) © USs (AnDSBr) € N (1), wiee Uy Ba €

A O
%

Propozycja 11. Jesli p jest skoniczona na (X, A), todla C, D € Amamy |u (C) — p(D)| < u(CAD).

Dowéd. Mamy € € DUC'\ D, wige p(C) < (D) + p(C\ D), czyli p(C) — (D) < p(C\ D) <
1 (CAD). Drugiej nieréwnosci dowodzimy identycznie. O

Definicja 26. Mowimy, ze A, B € A sa u-prawie rowne, jezeli u (AAB) = 0. Relacje bycia p-prawie

. I
réwnym oznaczamy =.

Propozycja 12. £ jest relacja rownowaznosci.

Dowéd. Zwrotnosé i symetria sg oczywiste. Jesli A £ B i B £ C, to AAC C (AAB) U (BAQC),
wiec u (AAC)=0i A £ C. O

Definicja 27. Funkcje d,, (A, B) = u (AAB) nazywamy pseudometryka. Jest ona metryka na A/u

Lemat 6. Niech (X, A, u) bedzie przestrzenia z miara. Wtedy A}, = o (AUN (u)).
Dowéd. Niech B € Aj. Wtedy istnieje A € A takie, ze AAB € N (u), a wtedy tez A\ B,B\ A €

N (). Zatem B = (AU (B\ A))\ (A\ B) € 0 (AUN (), czyli A% C o (AUN (). Wiemy, ze
AJ, jest o-algebra i AN (1) € A, wigc mamy tez drugie zawieranie. O

Definicja 28. Niech (X, A, u) bedzie przestrzenia z miara. Definiujemy 7 : A7 — [0, +00] wzorem
7 (B) = p(A), gdzie A € A jest takie, ze AAB € N (u). Taka definicja jest poprawna, bo rézne A
spelniajace te wlasnos$é réznia sie¢ o zbioér miary 0.

Twierdzenie 8. [i jest miara zupelna na Aj, i fil4 = p.

Dowéd. Jesli dla A € A} mamy B,C € A takie, ze AAB,AAC € N (1), to zachodzi BAC =
ANBAANC € N (p), wiec pn(B) = 1 (C) i 1t jest poprawnie okreslone oraz fi| 4 = p.

Niech (A,);2, C A, beda parami rozlaczne oraz niech B, € A bedzie takie, ze C, = A,AB, €
N (p). Dlai # j mamy B;NB; C C;UC};, bo jesli z € B;NB; nalezy do A;, to nie nalezy do A;, wiec
albo z € C}, albo z € C;. Zatem p (B; N Bj) = 0. Niech D,, = Bn\U?;ll B;. Mamy p (Dy,) = pu (Bn),
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bo i (Ba NUIS B) = 0. Zatem (U2 Ba) = 0 D) = S50 1(Dn) = Ty (B,
czyli m (U2, An) = > 0o i (Ay) 1 [ faktycznie jest miarg.

Jesli @ (B) = 0, to istnieje A € A takie, ze AAB € N () i p(A) = 0. Dla kazdego C' C B jest
ANC € N (), wiee C € A3, co daje zupetnosé. O

Whiosek. Jesli (X, A, u) i (X, B,v) sa przestrzeniami z miarg takimi, ze v jest zupelna, A C B i
via = p, tOAZgBiMAZ = L.

Twierdzenie 9. Jezeli p jest miarg o-skoticzona, to A (u°) = Al =0 (AUN (w)).

Dowéd. Mamy A}, C A (1°), bo p°| 40y jest zupelna. Niech X = (J77 ;| E,,, gdzie E,, € A sa takie,
ze p(E,) < co. Ustalmy E € A (u°). Do pokazania E € Ay, wystarczy pokaza¢ EN E, € Aj,
zatem mozna bez straty ogoélnosci zalozyé, ze p jest skoniczona. Z definicji u° (E) dostajemy ciag
(An)o2, C A taki, ze pu(A,) — p° (E) oraz E C A,. Mozemy zalozy¢, ze ten ciag jest zstepujacy
(przecinamy ze soba pierwsze elementy), co da nam A, N\, A dla pewnego A € A i u’(E) =
p(A) = p(A) = pP (ANE) + u® (A\ E), gdzie ostatnia réownosé to warunek Carathéodory’ego.
Mamy AN E = E, wiec z poprzednich réwnoséci wynika u® (A \ E) = 0. Podobnie jak przedtem
ul (A\ E) = u° (A’) dla pewnego A’ € A, zatem A\ E € N (u). Réwnosé E = A\ (A \ E) daje
Eeco(AUN (u)), co konczy dowdd. O

Whiosek. Mamy £ (A\4) = (B (Rd)):d. Miara Lebesgue’a otrzymana przedtem w konstrukeji Cara-
théodory’ego moze tez zostac uzyskana jako uzupelnienie (R%, B (R?), ).

Propozycja 13. Zachodzi card (B (R?)) = ¢ oraz card (£ (X)) = 2°.

Dowdéd. Pierwsza rownosé wynika z tego, ze zbiory borelowskie powstaja przez wielokrotne przeli-
czalne przeciecia i sumy przedzialow o koricach wymiernych, a tych jest continuum.

Druga réownos$é wynika z faktu, ze zbiér Cantora jest nieprzeliczalny i ma miare Lebesgue’a 0, wiec
wszystkie jego podzbiory réwniez sa A\'-mierzalne, co daje nam 2° zbioréw. O

Przykfad (Vitali). Rozwazmy relacje rownowaznosci na [0, 1] zadang przez x ~y < z —y € Q.
Niech V' C [0, 1] zawiera dokladnie jednego reprezentanta kazdej klasy réwnowaznosci. Niech (ry,) -
bedzie ciggiem wszystkich liczb z [—1,1] N Q. Definiujemy V,, = r, + V. Mamy V, NV, = 0 dla
n # m oraz [0,1] C J>2, Vi, C [-1,2]. Gdyby V byl Al-mierzalny, to kazdy V;, bytby A\'-mierzalny
oraz A\' (V) = A (V). Mielibysmy 1 < > >° A (V) < 3, ale ten szereg zbiega do 0 lub +oo —
sprzecznosc.

6. Funkcje mierzalne

Notacja. Dalej caly czas zakladamy, ze (X, .A) i (Y, B) to przestrzenie mierzalne.
Definicja 29. Mowimy, ze f : X — Y jest (LA/B)-mierzalna (lub po prostu mierzalna, jesli o-algebry
sa znane z kontekstu), jesli dla kazdego B € B mamy f~! (B) € A.

Jesli X 1Y to przestrzenie topologiczne, to mowimy, ze f jest borelowska, jesli jest (B(X) /B (Y))-
mierzalna.

Jesli ktoras z o-algebr jest znana z kontekstu, to ja pomijamy. Czasem piszemy tez f : (X, A) —
(Y, B), by podkresli¢ o-algebry.

Lemat 7. Ztozenie funkcji mierzalnych jest mierzalne.

Dowéd. (go f)~' (C) = f~1 (971 (C)). Zatem B =g~ (C)i A= f~'(B) sa w o-algebrach. [

Funkcje mierzalne Strona 12/27
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Lemat 8. JesliC CP(Y)io(C) =B, to f : X — Y jest mierzalna wtedy i tylko wtedy, gdy dla
kazdego C' € C mamy f~!(C) € A.

Dowéd. ( = ) Oczywiste.
(<= )NiechD = {B e B: f~'(B) € A}. Z zalozenia C C D. Latwo wida¢, ze D jest o-algebra. [

Whiosek. Jesli f : X — R, to f jest (A/B(R))-mierzalna wtedy i tylko wtedy, gdy dla kazdego
a € Q mamy f~!((—o0,a)) € A.

I Whiosek. Jesli X, Y to przestrzenie topologiczne, a f: X — Y jest ciagta, to jest tez borelowska.
| Definicja 30. Produktem o-algebr A, B nazywamy AQB =0 ({Ax B: A€ A B € B}).

Propozycja 14. Niech X,Y beda przestrzeniami topologicznymi. Zachodzi inkluzja B (X)®B (Y) C
B (X xY). Ponadto jesli X,Y spelniaja drugi aksjomat przeliczalnosdci (np. sa metryczne i osrod-
kowe), to mamy rownosé.

Dowéd. Rozwazmy D ={A € B(X): AxY € B(X xY)}. Mamy (U2, A,) xY =2, 4, xY i
A xY = (A xY)", wiec D jest o-algebra. Mamy B (X) C D, bo D zawiera zbiory otwarte. Z tego
wynika, ze dla dowolnego A € B(X) mamy A XY € B(X x Y). W podobny sposob dla B € B(Y)
mamy X x B € B(Y). Zatem AXx B=(AxY)N (X xB) € B(X xY). Z tego wynika zadana
inkluzja.

Ustalmy bazy przeliczalne X, Y — odpowiednio {U,} —, i {V,}o—,. Rodzina {U; x V; : i,j € N} } =
{W,}>7, jest baza topologii produktowej, wiec dla zbioru otwartego W mamy W = =, Wy =
Uzo:1 Ui(k) X V}(k) eB (X) ® B (Y) y/ tego Wynika B(X X Y) cB (X) X B(Y) O

Definicja 31. Niech F C YX. Definiujemy o (F) = o ({f*1 (B): feF,Be B}) Jest to najmniej-
sza o-algebra, dla ktorej wszystkie funkcje z F sa mierzalne. Piszemy o (f) = o ({f}).

Twierdzenie 10. Niech (X, A), (Y, B), (Y’,B’) beda przestrzeniami mierzalnymi. Niech f: X — Y
if X —>Y. Wtedy F = (f,f): X > Y xY' jest (A/B® B')-mierzalna wtedy i tylko wtedy,
gdy f i f’ sa mierzalne.

Dowéd. (= ) Dla B € Bmamy BxY' € BB'. Zatem A> F~1 (B xY') = f~1(B)nf~1 (Y') =
f~1(B), czyli f jest mierzalna. Analogicznie pokazujemy dla f'.

(<) Zbior C = {Bx B': B € B,B’ € B'} generuje o-algebre produktowa. Dla C' € C mamy
FL(C)=FY(BxB)=fYB)nf1(B)eA O

I Whiosek. B® B' = o ({my, Ty }). o-algebra produktowa jest generowana przez rzutowania.

Twierdzenie 11. Jezeli f,g: X — R sa mierzalnei « € R, to f+ ¢, f - g, af, min (f, g), max (f,g)
sa mierzalne.

Dowod. Mamy f+g = (+)o(f, g). Ztozenie (f, g) jest (A/B (R) ® B (R))-mierzalne, a dodawanie jest
ciagle, wiec (B (R?) /B (R))-mierzalne. Wobec réwnosci B (R?) = B (R) ® B (R) mamy mierzalnosé
f + g. Pozostatych przypadkéw dowodzimy analogicznie. 0

Definicja 32. Rozszerzony zbior liczb rzeczywistych to R = R U {+00, —0o}, gdzie 400 i —o0 s3
rozne i nie naleza do R. Rozszerzamy porzadek w naturalny sposéb.

W topologii wynikajacej z porzadku zbiory postaci [~00,a) i (b, +00] sa otwarte. Baza takiej topo-
logii jest {[—o0, a), (b, +o0], (a,b) : a,b € R}. Mamy B (R) = o ({[-00,a) : a € Q}).

Propozycja 15. B* € B(R) < B*=BUSJ, gdzie B€ B(R)i S € P ({£o0}).

Dowéd. Rozwazmy D = {D CR: D =BUS,B € B(R),S € P({oo})}. Mamy B(R) C B (R)
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oraz {—oo} = (o2 ;[—00, —n) i {+00} = N2 (n, +00], wiec D C B (R).

Mamy 0 € D, ;o Bn USn = (Useq Bn) U (U;2; Sn) oraz (BU S) = (R\ B) U (P ({#o0}) \ 5),
wiec D jest o-algebra. Do tego D zawiera zbiory otwarte w R, wiec mamy B (R) CD. O

Uwaga. Definiujemy operacje na R w sposob zgodny z intuicja. Nie definiujemy tylko sumy —oo+o00.
Zakladamy 0 - +00 = 0 oraz nie definiujemy i%.o

Notacja. Oznaczamy Mg (X) = Mg (X, A) = {f : X — K mierzalna}. Jesli K = R, to pomijamy

cialo w oznaczeniu. Do tego dla u,v : X — R oznaczamy {u<v} = {z e X :u(z) <v(zx)} i
podobnie dla znakow <, =, #£.

Propozycja 16. Mamy ¢ € Mc (X) <= Rep,Imp € Mg (X).
Dowdd. (= ) Rey i Im ¢ sa rzutowaniami ¢ na odpowiednie wspoétrzedne.

(<) Mamy ¢ = (+) o (Rep,iIm ), co jest mierzalne. O

Lemat 9. Jezeli (fy),—; C Mg (X, A), to infn>1 fr, Sup, > fn, limsup,, ., fn, liminf,_, f, oraz
lim,,_,~ fn (o0 ile istnieje dla kazdego x € X) sg mierzalne.

Dowdéd. Mamy sup f, = —inf —f,, oraz z definicji liminf, . fn = sup, > infr>, fi i analogicz-
nie limsup,, o, fn = infn>1supys,, fi. Zatem wystarczy pokazaé, ze dla kazdego a € R mamy

(info>1 fn) " ([=00,a)) € A. Rownosé (inf,>1 f,) ™" ([—o0,a)) = U2, fi! ([—o0,a)) koticzy. O

Definicja 33. Funkcje f € M (X) nazywamy schodkowa (prosta), jesli zbior wartosci f jest skon-
czony, czyli mamy f(X) = {ai1,...,a,} € R. Mozna wtedy przyja¢ a; < ... < a, i zapisac
fx)= Z?:l QjX{f=a,} (¥). Takie przedstawienie nazywamy postacia kanoniczna funkcji schodko-
wej.

Definicja 34. Przez £ (X, A) = £ oznaczamy zbior takich funkcji schodkowych f : X — R, ze
f(z)= Z;‘L:1 ajxa; (z) dla0 <a; <as <...<a,imierzalnych Ay,..., A,.

Dla f € £ i przy ustalonej mierze p piszemy I, (f) = 227, ajpu (4;j).

Propozycja 17. Jezeli {By,..., By} C A jest takim podziatem X, ze dla pewnej f € £ i pewnych

B, Bm € R mamy f(z) = 37, Bixs, (¢), to I, (f) = ZJ 1 Bip (Bj). Inaczej mowiac, ta
wartos¢ nie zalezy od wyboru reprezentacji funkcji.

Dowdd. Niech 0 < a3 < ag < ... < oy, bedzie zbiorem wartosci f € €1 i niech 4; = {f = a;}.

Wowcezas .
Zaju Z Z Bin (B Zﬁjﬂ(BJ)
j=1

i=1j:8;=a;

bo z faktu, ze {Bi,..., By} jest podzialem wynika, ze dla kazdego B; istnieje jedyne A; takie, ze
B; C A;. O

Propozycja 18. Jezeli f,g € €T i a,b > 0, to I, (af +bg) = al, (f) +bl,(g9) oraz f < g =
L (f) < 1 (9)-
Dowéd. Niech f =37 | a;xa, oraz g = 27:1 Bix B, Niech

{Cl,,Cg}:{AlmB]AZQB]¢®,1§’L§TL,1§]§TR}

o . . . ¢ . ¢
Wtedy istniejg takie of,..., 05 i B],...,0p, 26 f =D 110X, 19 =D 1_1 BrpXc,- Wtedy

L L ¥4
o (af +bg) = 3 (ach + BB 1 (Cr) = a3 (i) + 3 B (Ci) = allu (f) + b1 (9)
k=1

k=1 k=1

6. Funkcje mierzalne Strona 14/27



Miara i Calka Maciej Mikotajczak

I Dla f < gmamy I, (9) =1, (f)+1.(9—f)>1.(f), bol,(9— f)>0wynikaz g— f>0. O

7. Calkowanie 2025-11-24

Definicja 35. Oznaczamy M% (X, A) = {g EMg:g> 0}. Dla g € M% definiujemy catke funkcji
g jako

/gdu = sup I, (h)€0,400].
Et>h<g

Dla A € A oznaczamy [, gdp = [ xagdpu.
I Uwaga. Jesli g jest funkcja schodkowa, to [ gdp = I, (g).

Propozycja 19. Dla f,g € M% mamy f < g = [fdp < [gdporaz p({f>0}) =0 =
[ fdu=0.

Dowéd. Jesli f < g, to dla funkcji schodkowej h < f mamy tez h < g, wiec supremum w [ g du jest
brane po wigkszym zbiorze i [ fdu < [gdu.

Jesli p ({f > 0}) = 0, to dla funkcji schodkowej h takiej, ze h < fih € ET mamy {h > 0} C {f > 0},
wiee p({h > 0}) =011, (h) =0. Z tego wynika, ze [ fdu = 0. O

Twierdzenie 12 (O zbieznosci monotonicznej). Niech (X, A, p) bedzie przestrzenia z miara. Niech
(fn)eey C Mg bedzie taki, ze 0 < fi < fo < ...oraz f, (z) — f () dla kazdego x. Wowczas f jest
mierzalna oraz [ f,dp 2 [ fdp.

Dowdéd. f jest mierzalna jako granica funkcji mierzalnych. Dla kazdego f, mamy f, < f, wiec
Jfdp < [fodp < ... < [ fdp, czyli limy, oo [ fndp < [ fdu. Z tego wynika tez istnienie tej
granicy. Wykazemy teraz druga nieré6wnosc.

Niech h = 377" | ajxa; bedzie takie, ze h < f. Ustalmy a € (0,1). Niech E,, = {ah < f,} € A
Mamy (J;", E, = X, bo dla z € X jesli h(z) = 0, to oczywiscie z € E, dla kazdego n, a
w przeciwnym wypadku ah (x) < f(z) i istnieje takie n, ze ah(z) < f,(z) < f(x). Do tego
oczywiscie B, C Epy1. Mamy axg, h < f,, wiec

m

aZu(EnﬂAj)aj:/ozXEnhd,uS/fndu.

Jj=1

Przechodzac n — oo dostajemy al,, (h) < lim, o [ fndp, wiec idac @ — 1 mamy I, (h) <
lim, o | fn dp. Biorac supremum po wszystkich h dostajemy [ fdu <lim, o [ fr dp. O

Lemat 10. Jezeli g € M%, to istnieje ciag (fn),—, C ET taki, ze f,, / g. Jesli g jest ograniczona,
to zbiezno$¢ jest jednostajna.

Dowdd. Ustalmy g i n > 1. Niech A, = {g > n}. Dla kazdego ¢ € {0,1,...,n2" — 1} ustalamy
Bi=g"'([i27", (i +1)27")) i definiujemy f, = (Z?jo_l i2‘”xBn,i) +nyxa,. Widaé, ze f, <g.
Jedli g () < m dla kazdego z, to dla n > m mamy 0 < g(x) — f, (x) < 27", z czego wynika
zbiezno$¢ jednostajna. Jesli g nie jest ograniczona, to dla m = g (z) # co ten sam argument daje
nam zbieznosé punktows, a dla g (x) = co mamy f, (z) — oco. O

Twierdzenie 13 (O liniowosci catki). Jezeli f, g € M% ia,b>0,to

/(af—kbg)du:a/fd,u—kb/gdu.

Dowdd. Niech (f,)72; i (gn)oe; beda ciagami funkcji schodkowych punktowo zbieznymi do f i g.
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Niech h,, = af, + bg, / af + bg. Mamy

a/fdu—i—b/gd,u<—aIM(fn)—|—bIH(gn):Iu(afn+bgn)—>/(a,f—|—bg)du.
O

Twierdzenie 14 (Catkowanie szeregu wyraz po wyrazie). Jezeli (f,)re; C M% i szereg > o0 | fn jest
punktowo zbiezny, to jest mierzalny i

/ihdp&:i/fndu-

Dowéd. Zdefiniujmy gy = ZnN:1 fn- Mamy gy — Y07, fn, z czego wynika mierzalno$é tego
szeregu. Mamy gy 7 > 07 fn, wiec

g/fndueyé/fndu—/gNdu%/ni;fndu,

Whiosek. Jegli a,, € Ry dlan,k € Ny, to

3
-
B
Il
—
B
Il
—
3
Il
i

Dowéd. Rozwazamy o-algebre P (N, ) nad N, z miarg liczaca p (A) = | A|. Definiujemy ciag funkeji
(fn)yey zadany przez f, (k) = anx. Funkcja g, = fnX{1,...,k} jest prosta, mamy S gnpdp N
S fadp = Z;‘;l fn (4). Zatem

> an= [ S fudi= [frdu=3Y an
k=1n=1 n=1 n=1 n=1k=1

O

Definicja 36. Niech u bedzie miarg na (X, A), g € M%. Definiujemy miare v na A wzorem v (A) =
fA gdp. Funkcje g nazywamy gestoscia v wzgledem p. Piszemy v = gu lub dv = d (gu), g—/’: =g.

Propozycja 20. Niech g € M% i niech v bedzie miara o gestosci g wzgledem u. Wtedy v faktycznie

jest miarg na (X,A). Dla kazdej f € M% mamy [ fdv = [ fgdp. Jesli n = dv dla pewnego
de M%, to n = (dg) p.

Dowéd. Niech (A4,).2;, C A beda rozlacznymi zbiorami i niech A = | [°2 | A,. Mamy xag =

V(A)Z/xAgdu=Z/XA"gd/J:ZV(An)-

o0
Y ome1 XA, g, zatem
n=1

Dodatkowo v (§) = 0, wiec v jest miarg. Jesi h € E¥T 1 h=>"" | a;xa,, to

/th:ZaiV(Ai) =Z%/X&gdu:/Z%XA,ing:/hgdﬂ-
i=1 i=1 i=1

Niech f € M% i niech (s,,);—; C £ bedzie ciggiem zbieznym do f. Mamy

/fdyz lim [ s,dv= lim /sngdu:/fgdu.
n—oo n—roo
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Jesli n = dv, to mamy
n(A) :/XAddu:/XAdgdu,

zatem 1 = (dg) p. To konczy dowdd. O
8. Wlasnosci zachodzace prawie wszedzie

Definicja 37. Niech (X, A, u) bedzie przestrzenia z miara. Mowimy, ze wlasnos¢ W (x) zachodzi u-
prawie wszedzie (u-pw), jesli istnieje A € A takie, ze u(A) =01 {x € X : W(z) nie zachodzi} C A.

I Przykfad. Dla Y C X mamy xy = 0 p-pw jesli @ (Y) = 0.

Propozycja 21. Niech g, f € M% (X, A). Zachodzi
L. Vae(0,400) #({f = a}) <L [ fdp (nieréwnos¢ Markowa).
2. [fdu<oo = f<oop-pw.
3. [fdp=0 < f=0 p-pw.
4. f =g p-pw implikuje [ fdp= [gdp.
Dowéd. 1. Ustalmy a > 0. Mamy f > ax{f>a}, czyli [ fdu > ap({f > a}).

2. Mamy {f = oo} = (", {f > n}. Z poprzedniego punktu p ({f >n}) <+ [ fdu — 0, wiec
1 ({f = 00}) = limnsmg  ({f > n}) = 0.

3. Jesli [fdu=0,topn({f>1}) <nffdu=0. Zatemz {f >0} =", {f>2} mamy
@ ({f > 0}) =0. W druga strone juz pokazalismy.

4. Mamy max (f,g) — min (f, g) = 0 u-pw. Zatem
[ max(f9) = [min(f,9) s+ [ (max (£,9) = win (£.9)) du = [ i (£.9) .

W polaczeniu z [min (f,g)dp < [ fdp, [gdu < [max (f, g) du dostajemy [ fdu = [gdu.
O

Lemat 11 (Fatou). Niech (f»)p=; € MZ (X, A). Zachodzi

/lim inf f,, du < lim inf/fn duy .
n—oo

n—oo

Dowéd. Mamy infi>,, fi (z) 2 liminf, o fp (), wiee [infgs, frdp 2 [liminf, o f, () dp.
Do tego dla kazdego p > n mamy f, > infi>,, fi, czyli [ fpdp > [infy>,, fr. Zatem

. > [ o .
;gi/fpdu_/égafkdﬂé/h;ggffndu
Przechodzac n — oo w lewej stronie nieréwnosci mamy teze. O

Definicja 38. Niech f € Mg (X, A). Dla f* = max (f,0) i f~ = max(—f,0) zachodzi T, f~ €
M% (X, A). Definiujemy catke [ fdu = [ fTdu— [ f~ du zawsze, gdy to wyrazenie ma sens (czyli
nie otrzymujemy wyrazenia oo — 00).

Mowimy, ze f € Mg (X, A) jest catkowalna, jesli [ fTdu, [ f~dp < co. Wtedy [ fdp istnieje i
jest skoniczone.

Definicja 39. Definiujemy zbiér funkcji catkowalnych jako

Ei (X, A ) = /.% (1) = {f € Mg : [ jest calkowalna} .
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Dodatkowo definiujemy jego podzbior funkeji skoficzonych £ (p) = { fele(w: f(X)C R}.

Propozycja 22. Jezeli f € E}ﬁ (W)if=g—hdaghe M% A)nN Eﬁlﬁ (1), to

/ﬁm [rrau- [ an=[gdu- [nan.
7

Dowéd. Mamy f = T =g—h, wiec ft +h = g+ f~. Zatem [ frdu+ [hdp =

[f-dp+ [gdpu, czyh teza. O
Definicja 40. Dla f € Mg (X, A) i A € A definiujemy [, fdu = [ xafdyu. Mamy |xaf| < |fl,
wiec [, xaf du istnieje jezeli f € }ﬁ(,u)

Lemat 12. Niech f € Mg. Nastepujace warunki sg réwnowazne:
1. fe Lﬂﬁ ().
2. [f] € L1 (), cayl |f]dp < oo.
3. Istnieje g € L% (1), g > 0 takie, ze |f| < g.
Dowéd. (1 = 2) Mamy |f| = f* + f~, wiec [|fldu= [ fTdu+ [ f~du < cc.
(2 = 3) g =|f]| dziala.
(3 = 1) Mamy f*, f~ <|f| <g, wiec [ fTdp, [ f~du < 0. O

Propozycja 23. Zachodzi

L fell(p) = |[Fdu| < [Ifldp.

2. L' (1) jest przestrzenia wektorowa nad Ri f — [ fdu jest funkcjonalem liniowym.
3. JeélifGE%(,u),gEM@( A)i f =g ppw, tog€£1 )i fgdp= [ fdpu.

4. Jesli f,g € LL(n) 1 f < g p-pw,to [ fdu< [gdpu.

Dowéd. 1. |f fdu|=|ffrdu—[fdu|< [frdu+[fdu= [|fldp

2. Jesli f,g € LY (u) i a,B € R, to f\af+5g|du laf [1f1dp+18] [1g]dp < oo. Zatem
af + Bg € LY (u). To, ze calka jest liniowa, juz wiemy.

3. Mamy {|f| # g} € {f # g}, wiec |f| = |g| p-pw i [|gldp = [|fldp < coig € Lz (n). W
ten sam sposéb f* =g"i f~ =g~ p-pw, wiec

/gdu=/g+du—/g’du=/f*du—/f’du=/fdu-

4. Niech h = max (f,g). Mamy h = g p-pw, wiec h € L% (w) 1

Joau= [nau=[ran+ [-nauz [ ran.

Lemat 13. Jezeli f € L (1), to istnieje g € L1 (u) takie, ze f = g p-pw.
Dowéd. Z catkowalnoci f mamy f # doo pu-pw, wiec f = x{|f|<oo}f H-DW. O

Lemat 14 (O uzupe’rnianiu dziedziny). Rozwazmy ciag funkcji (fn),—; € Mg (X, A). Zbior A =
{x € X : Jlim, 00 fr (x) € R} jest mierzalny. Co wiecej, funkcja h : X % R zadana wzorem
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li n—oo Jn 9 € A . . . .
h(z) = Olm oo fn (@), @ jest mierzalna. Ta sama teza zachodzi, gdy dodatkowo zadamy,
) Wpp

by odpowiednia granica nalezata do R.

Dowéd. Rozwazmy funkcje G (z) = (iminf, o0 fn (), limsup,, ., fn (2)) € R x R. Jest ona mie-
rzalna jako zestawienie funkcji mierzalnych. Przekatna A = {(w,x) S ]R} jest domknieta (z
wlasnosci T5), wige borelowska. Zachodzi A = G~ (A), bo istnienie granicy jest rownowazne row-
noéci granicy dolnej i gérnej. Zatem A € A. Niech B C R bedzie zbiorem borelowskim. Jegli 0 ¢ B,
to h™' (B) = An{z € X : limsup,,_, ., fn () € B}, co jest mierzalne z mierzalnosci limsup,, , o, fn.-
Jesli0 € B, to h™* (B) = X\h~! (R\ B) i mozemy zastosowac poprzedni argument do dopelnienia.
To pokazuje, ze h jest mierzalna.

Zauwazmy, ze dla A’ = {x € X : 3lim, .o fp (z) € R} mamy A’ = G~} (Zﬁ ]R2), zatem A’ jest
mierzalny. Reszta argumentu przebiega bez zmian. O

Twierdzenie 15 (Lebesgue; o zbieznosci zmajoryzowanej). Jezeli (f,)o, C L!(p) i istnieje taka

funkcja f € Mg (X, A), ze dla p-pw z € X zachodzi lim, o fn (x) = f(x) oraz istnieje g €
M% (X, A) taka, ze [gdp < ooi|fn (z)| < g(z) p-pw dla kazdego n, to f € L' (u) oraz

/fd,u: lim /fndu oraz lim/|f—fn|du:0.

n—oo n—oo
Dowéd. Mamy |f — f,| <2gi|f — faul = 0 p-pw. Do tego [ |f|du < [gdu < oo, wiec f € L1 ().
Z lematu Fatou mamy

[ 290 = [timint (29 - 17 - £ dn < timint [ (29~ 17 ~ ful) s =
n—oo n—oo
/diwrlinginf/—If—fnldu=/2gdu—1imsup/If—fnlduﬁ /2gdu-

n— oo

Zatem 0 < liminf, o [|f — fuldp < limsup,_,. [ |f — foldp < 0, wiec te wartosci sa réwne i
mamy lim, o [ |f — fn|dp = 0. Ponadto

lim ‘/fdu—/fndu’S o /If—fnldu=0-
n—oo n—oo
O

Uwaga. Korzystajac z udowodnionego wczesniej lematu widzimy, jak uzyskaé funkcje f. Zatem w
celu zastosowania twierdzenia Lebesgue’a wystarczy upewnié sie, ze odpowiednia zbieznosé zachodzi

[-PW.

9. Ciaglosé i rézniczkowalnosé catek 2026.01.06

Uwaga. Topologicznie C = R?, wiec B(C) = B (R?) = B(R) ® B(R). Zatem f : X — C jest
mierzalna dokladnie wtedy, gdy Re (f) 1 Im (f) sa mierzalne.

Definicja 41. Piszemy Mc (X, A) = {f: X — C|Re(f),Im(f) € M (X, A)} oraz L{ (X, A, p) =
{f € MC (Xa-A) | |f| € ‘Cl (X,.A,,LL)}-

Elementy f € L& (X, A,n) nazywamy funkcjami catkowalnymi. Definiujemy dla nich [ fdu =
JRe(f)dpu+i [Im(f)dp € C.

Lemat 15. f € L (1) < Re(f),Im(f) € L (u).
Dowéd. ( = ) Dla kazdego z € C jest |Re (2)| < |z| i [Im (2)] < |z], wigc [Re (f)], [Im (f)| < | f]-

1
2

(+=) Mamy |f| = (Re(f)” +Im(f)*) ", wigc |f] < [Re ()| + |m (/)] O
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Propozycja 24. Niech f € L1 (). Zachodzi:
1. Re ([ fdu) = [Re(f)dp.

Cdm (f fdp) = [Im(f)dp.

Jfdu=[Tdu

NS fdp| < [1f1dp.

. L& () jest przestrzenia wektorowa nad C a f — [ f du jest funkcjonatem liniowym.

[\

T W

6. dla g € Mc(x, ) takiego, ze f = g p-pw zachodzi g € L () i [ fdp = [gdp.

Dowdd. Dowodu wymaga tylko (4), reszta wynika wprost z odpowiednich wlasnosci caltek funkceji
rzeczywistych. Mamy [ fdu = | [ fdu|e™ dla pewnego ¥ € [0,2), wiec dla ¢ = 21 — 1) jest

‘/fdu'=e“"/fdu=Re<e“"/fdu> = [re(eepyans [les|an= [ irlan.

Uwaga. Wszystkie nastepne twierdzenia wypowiadamy dla R. Wigkszos¢ z nich mozna wypowiedzieé
tez dla C, a dowody nie wymagaja praktycznie zadnych zmian.

O

Twierdzenie 16 (O ciagtosci catki wzgledem parametru). Niech (X, A, 1) bedzie przestrzenig z miara,
(E,dg) przestrzenia metryczna, f: E x X — R, { € E. Zakladamy, ze dla kazdego £ € E funkcja
x — f (& x) jest mierzalna, dla y-pw 2 € X funkcja & — f (&, z) jest ciagla w & oraz istnieje
g € L (n) takie, ze dla kazdego £ € E i p-pw x € X zachodzi | f (§,z)| < g (x). W takiej sytuacji
funkcja ' : E — R dana wzorem F (§) = [ f (&, z) du(x) jest dobrze okreslona dla kazdego & € E i
jest ciaglta w &g.

Dowéd. x — f (&, z) jest mierzalna, a z catkowalnosci g rowniez catkowalna, wiec definicja F (&)
jest poprawna. Niech (&,),—; C E bedzie ciagiem takim, ze &, — &. Dla p-pw z € X zachodzi
f(&n,x) = f(&,x). Z twierdzenia o zbieznosci zmajoryzowanej mamy zbiezno$é¢ calek, a wiec
F (&) — F (&), co daje poszukiwana ciaglosé. O

Whiosek. Niech p bedzie taka miara borelowska na (R, B (R)), ze dla kazdego = € R zachodzi
w({z}) = 0. Dla kazdego ¢ € L' (u) funkcja R > & — f(ioo €] pdpu jest ciggla.

Dowéd. Niech f : R? 3 (£,%) = X(—oo,] (%) ¢ (z). Funkcja £ — f (&, ) jest ciagla w § € R dla
wszystkich @ € R\ {&}. Mamy p({&}) = 0, wiec ta funkcja jest ciagla dla p-pw z. Do tego
£ 6,2)] < lo (). Zatem € > [ x(co g0 dn jest ciagla. 0

Definicja 42. Mowimy, ze A € A jest atomem miary p na przestrzeni mierzalnej (X, .A), jesli
w(A) > 01dla kazdego B C A jezeli B € A, to u(B) = 0.

| Definicja 43. Miare p nazywamy bezatomows, jesli u nie ma atomoéw.

Definicja 44. Majac dang ¢ € L' (R,B(R),\) definiujemy ¢ : R — C dana dla £ € R przez
@ (&) = [e*%p (z)dA(z). Wowezas @ jest ciagla. Nazywamy ja transformaty Fouriera ¢.

Jezeli p jest miara skoriczong na (R, B (R)), to transformata Fouriera p nazywamy funkcje fi (§) =
J e®® du(z). Jest to funkcja ciagla i ograniczona na R.

Definicja 45. Niech ¢ € £ (R,B(R),\). Niech h : R — R bedzie funkcja ciagla i ograniczona.
Wowczas definiujemy splot tych funkcji jako hx ¢ : R 3 & = [ (x)h (€ —z)dA\(z) € R, co jest
poprawnie zdefiniowane, ciagle i ograniczone.

Twierdzenie 17 (O rézniczkowaniu pod znakiem catki). Niech (X, A, u) bedzie przestrzenia z miara,
I C R przedzialem otwartym. Niech f : I x X — R, ug € I beda takie, ze dla kazdego u € [
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funkcja x — f (u,z) jest calkowalna, dla u-pw x € X funkcja u — f (u,z) jest rozniczkowalna w
ug oraz istnieje g € L1 (u) taka, ze dla kazdego u € I i p-pw z € X zachodzi |f (u,z) — f (ug, )| <
g () |u — up|. Wowcezas funkcja F : I — R dana wzorem F (u) = [ f (u, z) du(z) jest rozniczkowalna
w ug 1 zachodzi F' (ug) = % (ug, ) du(x).

Dowdd. Ustalmy ciag (un)pey C I\ {uo} taki, ze u, — ug. Niech B € A bedzie takie, ze 1 (B) =0
idlaxz € X\ B istnieje % (up, ) = limy, 00 %:igum Oznaczmy ten iloraz réznicowy przez
©n (z). Z lematu o uzupelnianiu dziedziny mozemy przyjaé, ze % (up, -) istnieje dla kazdego x € X
(i wynosi 0, gdy granica nie istnieje). Mamy |¢, (z)| < g(x). Zatem korzystajac z twierdzenia
Lebesgue’a o zbieznosci zmajoryzowanej dostajemy

F' (ug) F(UZZ) —Fo(uo) _ / f(un,s)l:f(uo,x) du(z) %/% (o, 7) () -

n n Ug

O

Whiosek. Niech (X, A, i) bedzie przestrzenia z miara, I C R przedzialem a f: I x X — R funkcja
taka, ze dla kazdego u € I funkcja x — f (u, x) jest catkowalna, dla p-pw € X funkcja u — f (u, )
jest rozniczkowalna na I oraz istnieje g € £1+ (1) taka, ze dla kazdego u € I'i ppw z € X

zachodzi

% (u,x)‘ < g (z). Wowcezas funkcja F : I 5 u — [ f (u,z)du(z) jest dobrze okreslona i

rozniczkowalna na I oraz zachodzi F' (u) = [ % (u, z) dp(z).

8 (€,2)| lu— wol < g (@) Ju — wol.
Zatem spelnione sa wszystkie zalozenia twierdzenia o rézniczkowaniu pod znakiem calki i mamy
teze. 5

Dowéd. Z twierdzenia o wartosci $redniej |f (u, z) — f (ug, z)| =

Propozycja 25. 1. Jezeli ¢ € L' (R,B(R),\) spetnia [|z¢ (z)|d\ (@) < oo, to transformata
Fouriera ¢ jest rozniczkowalna i ¢ (u) =i [ ze®®p (z) dA(z).
2. Jezeli ¢ € L1 (R,B(R),\), h: R — R jest klasy C! oraz h,h’ sa ograniczone, to splot h x ¢
jest rozniczkowalny oraz (h * @) = h' * .
3. Jezeli p € L' (R,B(R),\), h: R — R jest klasy C* oraz h(*) jest ograniczone dla kazdego k,
to splot h * ¢ jest klasy C°.

Dowéd. 1. Skoriczonosé ten catki oznacza catkowalnosé, wiec istnieje catkowalne g (x) takie, ze
g(x) > 01 |ze(x)] < g(x). Z tego mamy odpowiednie ograniczenie dla ¢, a wiec @ jest
rézniczkowalna i zachodzi odpowiedni wzor.

2. Ograniczono$¢ h i h' daje nam istnienie odpowiednich ograniczen na funkcje pod calky z
splocie, teza wynika z poprzedniego wniosku.

3. Wynika z wielokrotnej iteracji poprzedniego argumentu.

10. Normy catkowe
2026-01-09

Definicja 46. Mowimy, ze p, g € [1, oo] sa wyktadnikami sprzezonymi, jesli % + % = 1. Przyjmujemy

tu, ze é = 0, wiec p = 00, ¢ = 1 sg sprzezone.

Definicja 47. Niech (X, A, 1) bedzie przestrzenia z miara a p > 1 liczba rzeczywista. Definiujemy
zbidr funkcji, ktore sa catkowalne w p-tej potedze jako

£7 (X, A1) = £ (1) = {feM(X,A):/|f|”du< oo}.
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Definicja 48. Méwimy, ze funkcja mierzalna f : X — R jest ograniczona p-pw jezeli istnieje takie
CeR,zel|f(x)] <CdapupwzeX.

Oznaczamy L (X, A, u) = L>® (u) = {f € M (X, A) : f ograniczona u-pw}.

Definicja 49. Dla f € M (X, A) oraz p > 1 definivjemy || fl|l, = (/|f["du)” przy konwencji

00r = 00. Do tego definiujemy | flloo =inf{C € [0,00] : Vyopw zex |f (z)| < C}. Te funkcje czasem
nazywa si¢ supremum istotnym (essential supremum).

Uwaga. Dla p € [1,00] zachodzi f € LP (u) <= ||f]], < oco.

Definicja 50. Dla f,g € M (X, A) definiujemy relacje rownowaznosci f ~ g <= f = g p-pw.
Uwaga. Z wlasnosci calki wynika fakt, ze jesli f ~ g, to || f[|, = [lgll, dla p € [1,00].
Definicja 51. Dla p € [1, 00| definiujemy przestrzen ilorazowa

LP (X, A p) = LP (o) = £ (K A )/

Uwaga. Elementami L? sg klasy réwnowaznosci funkcji, jednak czesto méwi sie o ,funkcjach w LP”,
bowiem wiele rozumowan nie zalezy od wyboru reprezentanta klasy.

Uwaga. Analogicznie definiujemy odpowiednie przestrzenie funkeji zespolonych Lf (p) i L (p).

Lemat 16 (Nierownos¢ Younga). Niech 1 < p, ¢ < oo beda wyktadnikami sprzezonymi. Wowezas dla
wszystkich u,v > 0 zachodzi uv < % + %. Roéwnosé zachodzi doktadnie wtedy, gdy v = uP~1.
Twierdzenie 18 (Nieréwnos¢ Holdera). Jezeli p,q € [1,00] sa wykladnikami sprzezonymi, f,g €
M (X, A), to [|fgldu <|Ifl, llgll, W szczegolnosci jezeli f € LP (), g € L (1), to fg € LT ().

Dla p,q < oo réwno$é¢ zachodzi doktadnie wtedy, gdy |f|” i |g|? sa liniowo zalezne w L' (1), to
znaczy istnieja takie o, 3 € R, Ze co najmniej jedno z nich jest niezerowe i a|f|” + B g|? = 0 p-pw.

Dowdd. Jesli || f][, = 0 lub |g|, = 0, to |fg] = 0 p-pw, bo zerowos¢ calki implikuje zerowosé
funkeji. Zatem mozna zalozy¢ ||f][,,[|lgll, # 0. Jesli p =1, ¢ = oo, to |fg| < [|gll [f| p-pw, wiee
J1fgldu < llglloe [171dp = llgll 1/1l;- Dalej zakladamy p, q # oo

. L . . P q .
Z nieréwnosci Younga dla u = ||J|c;ﬁil, v = ‘ﬁ’;ﬁz dostajemy ll\ff(\TZﬁéjlﬁl)ql < %‘{%é + % "T‘(gz”)gl . Calkujac
obustronnie mamy m f |fgldu < 1% A é =1.

Rownosé zachodzi, gdy w nieréwnosci Younga réwnosé zachodzi p-pw. Zatem musimy mieé |ﬁ;ﬁ)|
q

p—1 q
(H{JS?‘) , co po podniesieniu do potegi ¢ = ;25 daje |g ()| = ”j’cHg If (). O
p p

Whiosek (Nieréwnos¢ Cauchy'ego-Schwarza). Jedli f,g € M (X, A), to

/Ifgldué </|f|2du); (/ |g|2dﬂ>;.

Whiosek. Jezeli pu(X) < oo oraz p,q to wykladniki sprzezone i p > 1, to dla kazdej funkeji f €
1
M (X, A) zachodzi || fll; < p(X)7 ||fll,,- Zatem LP () € L* (u) i LP () € L* (i) dla p € (1, 00].

Dowdd. Wystarczy zastosowaé nierownosé Holdera dla g (x) = 1. O
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1_
7

Whiosek. Jezeli (X) <ooil<r <1’ <oo,todla fe M(X,A)jest ||f]l, < p(X)

P

Dowéd. Wystarczy zastosowaé poprzedni wniosek do p = %, i funkcji |f|", mamy

J1s7 < ux (/f|) ,

co po obustronnym wzieciu pierwiastka r-tego stopnia daje teze. O

Whiosek. Jezeli p(X) <o0il <p<qg<oo,toL?(u)CLP(u)iL?(u)CLP(u).

Dowéd. Przypadek ¢ < oo natychmiast wynika z poprzedniego, a ¢ = oo wynika z tego, ze przy
ograniczonym f () odpowiednie calki sg skornczone. O

Whiosek. Jezeli p(X) =1, to dla 1 <p < g < oo mamy || f|, < || f]l,-

Propozycja 26 (Nieréwnos¢ Jensena). Jezeli pu (X) = 1 oraz ¢ : [0,00) — [0, o) jest funkcja wypukla,
to dla kazdej funkcji f € M (X, A) takiej, ze f > 0 zachodzi ¢ ([ fdu) < f @ o fdu, gdzie
© : [0,00] — [0, 00] jest rozszerzeniem ¢ przez ¢ (00) = co. W szczegolnoéci jesli po f € L' (), to
feLt(u).

Z kolej jesli ¢ : [0,00) — [0,00) jest funkcja wklesla a f jest dodatkowo calkowalna, to [ o fdu <
¢ ([ fdp). W szczegolnosci ¢ o f € L1 (u).

Dowdéd. Na poczatku wypowiedzmy kilka faktow o funkcjach wypuklych. Sg one ciggte we wnetrzu
swojej dziedziny. Jesli dla @ : [a, b] — R wypuklej oznaczymy zbior prostych lezacych pod wykresem
funkcji jako Ee = {€:y = cy +d € R | Vye(ap) £ (y) < @ (y)}, to zachodzi @ (z) = sup,ep, ¢ (2).
Zauwazmy, ze ¢ jest wypukla. Mamy @o f (z) = X{s=0} (%) ¢ (0)+X{o<s<o0}® (f (2)) +X{f=00} (2)-
oo, wige z ciaglosci ¢|(9,0c) mamy mierzalnosé tej funkcji. Jezeli [ @o fdu = oo, to teza zachodzi.
Dalej zakladamy skoriczonos¢ tej calki. Dla ¢ € Ez mamy £ ([ fdu) =c [ fdu+b= [fo fdu <
[ @o fdu < co. Biorac supremum po ¢ € Ej dostajemy @ ([ fdu) < [@o fdu.

—1) jest wypukta, wiec ¥ o f jest mierzalna (nie musimy dodefiniowywaé 1 w nieskoniczonosci, bo
[ jest p-pw skoriczona). Dla £ (y) = cy +d > ¢ (y) mamy [¢o fdu < [Lofdu=a [ fdu+b=
14 (f f du). Biorac infimum po wszystkich takich ¢ dostajemy teze. O

Twierdzenie 19 (Nieréwnos¢ Minkowskiego). Jezeli f,g € LP (1) i p € [1,00], to f+ g € LP (u) i
If +gll, < ILfIl, + llgll,-

Dowéd. Dla p = oo teza wynika z nieréwnosci trojkata. Ustalmy p € [1,00). Mamy |f + g’ <
(f1+ 1g))? < 22max {|f|",|g9["} < 2P (|f|” + |g|), gdzie druga nieréwno$¢ wynika z rozpisania
wzoru Newtona. Calkujac stronami dostajemy |f + g|¥ € £ (u), czyli f + g € LP (u).

Dla p = 1 nieré6wno$¢ wynika z nieréwnosci trojkata. Zatem mozna zatozyé p > 1. Niech ¢ = p’%l <
0o. Mamy

/|f+g|pdu =/|f+g\ |f 49l dp < /Ifl |f+g\p_1du+/lg| [f 49l dp <
p—1f| _ q(p—1) %_
11, (#4977, = (U1, + ) (17407 P ) =

(11, + tat,) (/1 f+g|pdu>ztl

Wartos¢ A = ([ |f + g|"dp) = jest skoniczona, bo f+g € LP (u). Jesli A = 0, to teza zachodzi. W
przeciwnym wypadku wydzielamy obustronnie przez A, co daje teze. O

(F+9 7"+l

Twierdzenie 20. L, jest przestrzenia unormowanac dla dowolnego p € [1,00]. Dodatkowo Lo jest
przestrzenig z iloczynem skalarnym (f, g) = [ fgdu (( = [fgdu w C).
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Dowdéd. Nierownos¢é Minkowskiego daje nieréwnos$c trojkata, a pozostate warunki sg oczywiste.
| fgdu spelnia wlasnosci iloczynu skalarnego, odpowiadajaca mu norma to wlasnie ||-||,. O

Lemat 17. Jezeli (fn),2; C LP(p) dla p € [L,00) i f, > 0 dla kazdego n, to |3, fall, <
Yz 1l

Dowéd. Ustalmy N > 0. Z nieréwnosci Minkowskiego mamy

N N [eS)
S fall <D Mall, <YMl -
n=1 p n=1 n=1

P P
Do tego supy HZQ’ZI fn = supy [ (25:1 fn) dp = [ (supN 25:1 fn) dp, gdzie ostatnie

przejscie wynika z tego, ze sumujemy dodatnie wartosci. To konczy dowod, bo supy 27]:[:1 fn =

et fr- =

Lemat 18. Niech (f,),—, C £P (1) dla p € [1,00) bedzie ciagiem Cauchy’ego wzgledem ||-||,. Wow-
czas istnieja takie f € LP (u) oraz n (1) <n(2) < ..., ze limg o0 frur) (z) = f (v) dla p-pw 2. Co
wigeej f = limg o0 frnr) W LP (1)

Dowéd. Z definicji ciagu Cauchy’ego znajdujemy taki ciag n (1) < n(2) < ..., ze dla k > 1 za-
chodzi || fages1) = fag |, < 27F. Niech n(0) = 01 fo = 0. Mamy frx41) = S0 FaGi+) — Fali)-
Pokazemy, ze szukang funkcja jest f = Z;’;O fn(i+1) — fn(j)- Mamy HZ;’;O fnG+1) — fn(j)Hp <
Z;io an(j+1) = fn(j)Hp < an(l)H + 2;11 2% < oo. Zatem f € LP (u) i f(z) = limp_ o0 frn () dla
p-pw . Do tego ||f = fu ||, < 52k [ fagirn) = Fati ||, < 52k 37 = 0. -

Whiosek (Twierdzenie Riesza-Fischera). £P (u) i LP (u) sa przestrzeniami zupelnymi dla p € [1, oo].

oo

Dowéd. Przypadek p < oo rozwazyliSmy w poprzednim lemacie. Dla ciggu Cauchy’ego (f,),_; €

£5° () niech Ay = {2 € X ¢ fy (2)] > | felloc} i B = 18 € X : [fn (@) — o (@)] > I — Fllc}-
Sa to zbiory miary zero. Zbior E = ;- Ax U U, ,._; Bm,n rowniez jest miary zero. Na X \ E
zachodzi nier6wnosé |fy, (z) — fm ()] < || fr — meoo; wiec rozwazany cigg jest jednostajnie zbiezny.
Niech f bedzie granica tego ciagu na X \ E, a na E niech rowna sie 0. Dla odpowiednio duzego
N mamy |fnll < |Ifnlloe +1 dla n > N. Zatem |f (z)| < ||fn]l + 1 dla p-pw z. Podobnie

|fn () — f(x)| < e dla p-pw z i odpowiednio duzego n. Zatem || f, — f||, — 0. O

Whiosek. Jezeli (f,,),—, i g sa elementami £? (1) dla p € [1, 00) oraz dla kazdego n mamy |f,| < g
p-pw, to jesli f (z) = limp o0 fn (z) dla p-pw z, to f € LP (u) oraz lim, e || fn — fll, = 0.

Twierdzenie 21 (Riesz). Ustalmy p € [1,00). Niech f,(fn)or; C LP (1) beda takie, ze f(z) =

n=1

lim, 00 fr (z) dla p-pw . Wtedy lim,, o0 || fr, — f||p = 0 wtedy i tylko wtedy, gdy lim,, ||anp =
£,

Dowdd. (= ) Wystarczy zastosowa¢ odwrotng nieréwnosé trojkata ||| foll, — [Ifll,| < [Ifn — fll,,-

(<) Mamy |f, — f[" <27 (|ful” + [fI). Zatem 2P (| fu|” + | fI) = |fn — fI” > 0 i mozna zastoso-
waé lemat Fatou

[2e1sr au= [timine @ (A7 +14) = 1o - ) <
[ 1r duimint [ 2217 au—timsup [15, - P dn <[220 157 d,
n—0o0 n—00

gdzie ostatnie przejscie korzysta ze zbiezno$ci normy. Nierownosé okazala sie by¢ rownoscia, wiec
mamy limsup,,_, . [ |fn — fI" du =0, co daje teze. 0
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11. Miary regularne
2026-01-19

Definicja 52. o-algebrg zbiorow Baire’a nazywamy o-algebre
Ba(X)=0 ({f_1 (U) : U C R otwarty, f : X — R ciagla}),

ktora jest najmniejszg o-algebra wzgledem ktorej wszystkie rzeczywiste funkcje ciagle na X sa
mierzalne.

Definicja 53. Mowimy, ze miara u na (X, .A) jest
e zewnetrznie regularna, jezeli dla A € A jest p(A) = inf {u (U) : A C U, U otwarte,U € A}.
e regularna, jezeli dla A € A jest pu(A) =sup{u(K): K C A K zwarty, K € A}.

e regularna wzgledem zbior6w domknietych, jezeli dla A € A jest
w(A) =sup{p(D): D C A, D domkniete, D € A}.

Miare skoniczona na (X, A) nazywamy ciasna (tight), jezeli X spelnia warunek z definicji miary
regularnej.

Lemat 19. Niech X bedzie przestrzenia metryczna, a p skoiiczona miara borelowska na X. Niech R
bedzie rodzing zbiorow, ktore spelniaja warunek z definicji miary zewnetrznie regularnej i regularnej
wzgledem zbioréw domknietych. R jest o-algebra.

Twierdzenie 22. Jezeli X jest przestrzenia metryczna, to kazda skoniczona miara borelowska na X
jest regularna wzgledem zbioréw domknietych i zewnetrznie regularna.

Dowéd. Wystarczy pokazaé, ze zbiory otwarte spelniajg odpowiednie warunki, bo rodzina zbio-
row spelniajacych rozwazane warunki jest o-algebra. Dla U C X otwartego spelniony jest waru-
nek zewnetrznej regularnosci, bo miara jest monotoniczna. Rozwazmy zbiory domkniete postaci
F, = {z e X :dist(z, X \U) > %} Mamy F,, C U oraz F, C F,41 i Uy, F, = U. Zatem
limy, 00 pt (Fr) = p(U), co swiadezy o p(U) < sup{p(F): F C U, F domkniety}. Druga nieréw-
nos¢ wynika z monotonicznosci miary. O

Twierdzenie 23. Kazda ciasna, skoniczona miara borelowska na przestrzeni metrycznej jest regu-
larna.

Dowéd. Niech K bedzie takim zbiorem zwartym, ze p (X \ K) < e. Dla dowolnego F' mamy
w(F) = p(FNK)+ pu(F\K) < u(FNK) + e. Dla zbioru borelowskiego A mamy pu(A) =
sup{p (F): F C A, F domkniety} < e+sup{p(FNK): F C A, F domkniety}. Zbiory postaci F'N
K sa zwarte, zatem przechodzac e — 0 dostajemy u (A) < sup{u (D) : D C A, D zwarty}. Druga
nieréwnos$é wynika z monotonicznosci miary. O

Definicja 54. Przestrzenia, polsks nazywamy osrodkows przestrzen topologiczna, ktéra jest metry-
zowalna w sposoéb zupelny.

Twierdzenie 24 (Ulam). Kazda skorniczona miara borelowska na przestrzeni polskiej jest ciasna, wiec
regularna.

Dowéd. Niech (z,),—; C X bedzie osrodkiem. Ustalmy ¢ > 0 i m > 1. Istnieje n takie, ze dla
K = Uj—, B (2, ;) mamy p(X \ Kp,) < 5. Niech K = (2, K;. Ten zbior jest zwarty, bo
jest domkniety i calkowicie ograniczony (dla kazdego 6 > 0 mozna go pokry¢ skoriczona liczba

kul o promieniu ), co w przestrzeniach zupelnych implikuje zwartosé. Do tego u (X \ K) <
Yt n(X\Ky) <e. 0

Definicja 55. Miara borelowska p na X jest miara Radona, jezeli dla kazdego zwartego K C X
zachodzi p (K) < oo.

Definicja 56. Przez C. (X) oznaczamy zbior ciaglych funkeji f : X — R o zwartym nosniku.
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I Propozycja 27. Miara Radona na lokalnie zwartej przestrzeni metrycznej jest regularna.

Lemat 20. Jezeli p jest miara Radona na lokalnie zwartej przestrzeni metrycznej X, to J : C. (X) —
R zadane przez J (f) = [ fdu jest dodatnim funkcjonalem liniowym na C, (X).

Twierdzenie 25 (Riesz, Markow, Kakutani). Niech X bedzie osrodkowa, lokalnie zwarta przestrzenia
metryczna. Jezeli J jest dodatnim funkcjonatem liniowym na C. (X), to istnieje dokladnie jedna
taka miara Radona p na (X,B (X)), ze J(f) = [ fdp. Ponadto dla otwartego U C X zachodzi

w(U) =sup{J(f): f€C.(X),0< f<xu}

Twierdzenie 26. Jezeli (X, A, i) jest przestrzenia z miara, p € [1,00), to zbior klas rownowaznosci

funkcji prostych nalezacych do £ () jest gesty w (Lp (), Il p).

Jezeli X jest przestrzenia metryzowalng a p zewnetrznie regularng miara borelowska na X, to
ograniczone funkcje lipschitzowsko ciagle w £P (1) sa geste w LP (u).

Jezeli X jest metryzowalna, osrodkowa, lokalnie zwarta przestrzenia a p miarag Radona, to funkcje
lipschitzowskie w C.. (X)) sa geste w LP (u).

Whiosek. C, (R?) jest gesty w £P (\) dla p € [1,00).
Dowdd. A jest miara Radona. O

12. Absolutna ciagltosé
2026-01-21

Definicja 57. Niech p, v beda miarami na (X,.A). Mowimy, ze v jest absolutnie ciagla wzgledem p
(oznaczenie v < p), jesli p(A) =0 dla A € A implikuje v (A4) = 0.

v jest singularna (ortogonalna) wzgledem p (co oznaczamy v L u), jesli istnieje N € A takie, ze
B(N)=0=v (X \N).

Przyktad. Dla réznych a,b € X mamy 0, L 0, (miara Diraca).
Dla f e Mt (X, A)iv(A) = [, fdu mamy v < p.

Twierdzenie 27 (Lebesgue, Radon, Nikodym). 1. Jezeli v, u sa o-skoriczone, to istnieje dokladnie
jedna para (v, vs) miar na (X, A) takich, ze v = v, + vs 1 vy < i, vs L p.

2. Jezeli v, u sa o-skoriczone, to istnieje taka funkcja mierzalna g : X — [0,00), ze v, (4) =
fA gdp dla kazdego A € A. Do tego g jest wyznaczone jednoznacznie w L' (u).

Dowdéd. Zakladamy skonczonosé miar. Najpierw rozwazymy przypadek v < pu. Wtedy dla g €
MFT (X, A) mamy [gdv < [gdu. Zatem £*(p) C L' (u) € L£'(v) i ma sens odwzorowanie

®: L2(n) > f — [ fdv € R. Oznaczmy przez ® odwzorowanie indukowane na L? (u). Stosu-
jac nierownos¢ Cauchy’ego-Schwarza mamy

[N

@q»g/flws(/ﬂﬁﬂéwm%gmgwua>

Zatem ® jest cigglym funkcjonatem liniowym~na L? (), ktore jest przestrzenia Hilberta, wiec z
twierdzenia Riesza istnieje g € L? (1) takie, ze ® (f) = [ fgdu. W szczegolnosci v (A) = [xadv =
® (xa) = [, 9du.

Dla ustalonego £ > 0 mamy ciag nier6wnosci p({g >1+¢}) >v({g>1+¢}) = f{gzl+e} gdp >
(1+e)pu({g>1+¢}). Wynika z niego, ze 1 ({g > 1+ ¢}) = 0, bo v jest skoniczona. Mamy zatem
p({g>1}) =p (Unzl {g>1+ %}) =0, czyli 0 < g <1 p-pw.

Teraz rozwazamy dowolne skoniczone u,v. Niech n = p+ v. Wtedy v < n. Mamy wiec funkcje mie-
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rzalna h : X — [0,1] taka, ze [ fdv = [ fhdny dla kazdego f € L2 (p). Mamy [ fdv = [ fhdn =
[ fhdv+ [ fgdpu, gdzie ostatnie przejscie zachodzi dla funkcji prostych, wiec z twierdzenia o zbiez-
nosci monotonicznej réwniez dla mierzalnych. Zachodzi wiec réwnosé [ f(1—h)dv = [ fhdp.
Niech N = {h=1}. Dla f = xy mamy 0 = [, (1—h)dv = [ hdp = p(N). Zatem miara
vs = XNV spelia v, (X \ N) =0= p(N) i mamy vs L pu.

Niech f = xx\wv (1— R~ f dla f € MT (X, A). Mamy réwnosé fX\Nfdu = ff(l —h)dv =
fX\Nf% dp. Dla f = xa zachodzi wiec v (AN (X \N)) = [, xx\~ 727 d. Mozemy polozyé
Va:XX\N%ou, codanamV:Va+usil/a<<,u.

Dla miar o-skoticzonych mamy ciag X = |-, E, taki, ze p(E,),v (E,) < co. Mozemy zalozy¢
E, C E,4 1. Stosujemy przypadek skoriczony na v, = v|g, 1 un, = plg, 1 definiujemy v, (A) =
>0 Una (AN (E, \ En_1)), analogicznie vg.

Pozostato pokazaé¢ jedynosé. Niech (v,, vs) 1 (v}, V%) spelniaja pierwszy punkt. Wtedy p = v, — v}, =
V. —v, spelia p < p (jako v, —v!) oraz p L p,bojeslivg (N) =v, (N')=pu(X\N)=p(X\ N') =
0,to p(NNN")=0=p(X\(NNN')). Z tego wynika p = 0.

Niech g,5 beda takie, Ze vo = Jo9du= [gdpu. Weedy Jgogy 90 = Va {9>9}) = [5ogy 9dn, 2
czego wynika p ({g > g}) = 0. Analogicznie u ({g > g}) = 0. Zatem g = g u-pw. O

Definicja 58. Jezeli v < pu, to v, = v i vy = 0. Wtedy funkcje g otrzymana z twierdzenia Radona-

Nikodyma nazywamy pochodng Radona-Nikodyma v wzgledem p i piszemy g = g—z.

Twierdzenie 28. Jezeli p jest o-skoniczona a v skonczona, to v < p wtedy i tylko wtedy, gdy dla
kazdego € > 0 istnieje § > 0 takie, ze dla kazdego A € A zachodzi p(4) <d = v (A4) <e.
Dowéd. (= ) Wiemy, ze istnieje g takie, ze v (A) = [, gdp. Wiemy, ze f{g>n}gd,u — 0 przy
n — oco. Zatem dla € > 0 istnieje M > 0 takie, ze f{gZM} gdu < 5. Wtedy

€
V(A):/ gdu+/ gdu<§+Mu(A).
{9>M}NnA {g<M}NA

Przyjmujac § = 557 dostajemy v (A) < e.
( <) Oczywiste. O
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