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1. Podstawowe definicje
2025-10-06

Definicja 1. Niech X będzie niepustym zbiorem. Mówimy, że rodzina F ⊆ P (X) jest (σ-)∩-stabilna,
jeśli A,B ∈ F =⇒ A ∩ B ∈ F (w wersji σ : (An)

∞
n=1 ⊆ F =⇒

⋂∞
n=1An ∈ F). Analogiczne

definicje wprowadzamy dla innych operacji teoriomnogościowych.

Definicja 2. Mówimy, że F ⊆ P (X) jest σ-algebrą, jeśli

1. X ∈ F ,

2. A ∈ F =⇒ Ac ∈ F ,

3. F jest σ-∪-stabilna.

Przykład. σ-algebrami są:

1. F = {∅, X},

2. F = P (X),

3. F = {A ⊆ X : A przeliczalny ∨Ac przeliczalny},

4. Jeśli G ⊆ P (Y ) jest σ-algebrą i T : X → Y , to T−1 (G) jest σ-algebrą.

5. Jeśli F jest σ-algebrą na X i A ⊆ X, to FA = {A ∩B : B ∈ F} jest σ-algebrą.

Propozycja 1. Przecięcie dowolnej niepustej rodziny σ-algebr na X jest σ-algebrą.

Definicja 3. Niech E ⊆ P (X). σ-algebrą generowaną przez E nazywamy najmniejszą (w sensie
inkluzji) σ-algebrę zawierającą E . Wprowadzamy na nią oznaczenie σ (E) =

⋂
E⊆F,Fσ-algebra F .

Przykład. 1. Jeśli E jest σ-algebrą, to σ (E) = E .

2. Jeśli A ⊆ X, to σ ({A}) = {∅, A,Ac, X}.

3. Dla Fin (X) = {B ⊆ X : |B| < ℵ0} mamy σ (Fin (X)) = {F ⊆ X : |F | ≤ ℵ0 ∨ |F c| ≤ ℵ0}.

Propozycja 2. Jeśli F jest σ-algebrą, to:

1. ∅ ∈ F ,

2. F jest σ-∩-stabilna,

3. F jest ∪,∩, \-stabilna.

Dowód. 1. ∅ = Xc,

2. (An)
∞
n=1 ⊆ F =⇒

⋂∞
n=1An = (

⋃∞
n=1A

c
n)
c ∈ F ,

3. A,B ∈ F =⇒ A ∪ (∩)B ∪ (∩) ∅ ∪ (∩) ∅ ∪ (∩) . . . ∈ F , A \B = A ∩Bc ∈ F .

Definicja 4. Rodzinę R ⊆ P (X) nazywamy pierścieniem, jeśli

1. ∅ ∈ R,

2. R jest ∪, \-stabilna.

Propozycja 3. Każdy pierścień jest ∩-stabilny.

Dowód. A ∩B = (A ∪B) \ ((A \B) ∪ (B \A)).

Definicja 5. Algebrą nazywamy taki pierścień A, że X ∈ A.
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Przykład. 1. Każda σ-algebra jest algebrą,

2. {F ⊆ X : |F | < ℵ0 ∨ |F c| < ℵ0} jest algebrą, która nie jest σ-algebrą dla |X| ≥ ℵ0,

3. Fin (X) jest pierścieniem, który nie jest algebrą dla |X| =∞.

4. {∅} to pierścień.

Propozycja 4. R jest algebrą wtedy i tylko wtedy, gdy X ∈ R oraz R jest ∪-stabilne i zamknięte
na branie dopełnień.

Dowód. ( =⇒ ) Mamy X ∈ R, więc dla A ∈ R jest Ac = X\A ∈ R, pozostałe warunki są oczywiste.

(⇐= ) Mamy ∅ = Xc ∈ R, dla A,B ∈ R jest A \B = A ∩Bc = (Ac ∪B)
c ∈ R.

Uwaga. Każdy pierścień jest △-stabilny (gdzie △ to różnica symetryczna). Krotka (R,△,∩) jest
pierścieniem w sensie algebraicznym.

Definicja 6. D ⊆ P (X) nazywamy układem Dynkina, jeśli

1. X ∈ D,

2. A ∈ D =⇒ Ac ∈ D,

3. D jest σ-⊔-stabilna (zamknięcie na przeliczalne sumy rozłącznych zbiorów).

Uwaga. Zamknięcie na dopełnienia w powyższej definicji można zastąpić zamknięciem na różnicę:
dla A,B ∈ D takich, że A ⊆ B zachodzi B \ A ∈ D. Przy X ∈ D zamknięcie na dopełnienia z niej
wynika, a mamy B \ A = B ∩ Ac = (Bc ∪A)c, i Bc ∩ A = ∅, więc z ostatniego warunku mamy
zamknięcie na różnicę przy zamknięciu na dopełnienia.

Przykład. 1. Każda σ-algebra jest układem Dynkina,

2. Dla |X| = 2n rodzina Peven (X) = {A ⊆ X : 2 | |A|} jest układem Dynkina, ale dla n > 1 nie
jest algebrą.

Definicja 7. Niech E ⊆ P (X). Przez δ (E) oznaczamy najmniejszy układ Dynkina zawierający E , a
przez α (E) najmniejszą algebrę zawierającą E .

Twierdzenie 1. Układ Dynkina D jest σ-algebrą wtedy i tylko wtedy, gdy jest ∪-stabilny (równo-
ważnie: ∩-stabilny lub jest algebrą).

Dowód. ( =⇒ ) σ-algebra jest ∪-stabilna.

(⇐= ) Niech (An)
∞
n=1 ⊆ D. Oznaczmy Dn = An \

⋃n−1
i=1 Ai. Mamy

⋃∞
n=1Dn =

⋃∞
n=1An oraz Dn

są parami rozłączne. Do tego Dn ∈ D, bo ∪-stabilność i zamkniętość na dopełnienia daje nam
zamkniętość na branie (dowolnych) różnic. Zatem

⋃∞
n=1Dn ∈ D, co kończy dowód.

Twierdzenie 2. Jeśli E ⊆ P (X) jest ∩-stabilna, to δ (E) = σ (E).
Dowód. Mamy δ (E) ⊆ σ (E), bo każda σ-algebra jest układem Dynkina. Dla dowodu drugiej inkluzji
wystarczy pokazać, że δ (E) jest ∩-stabilna.

Dla każdego D ∈ δ (E) definiujemy DD = {Q ⊆ X : Q ∩D ∈ δ (E)}. DD jest układem Dynkina:
mamy X ∈ DD, jeśli A,B ∈ DD oraz A ⊆ B, to (B \A)∩C = (B ∩ C)\ (A ∩ C) ∈ δ (E). Na koniec
(
⋃
An) ∩D =

⋃
(An ∩D), co implikuje ostatni warunek z definicji układu Dynkina.

Dla każdego E ∈ E mamy E ⊆ DE (wynika z założenia twierdzenia), więc δ (E) ⊆ DE . Z tego
wynika, że dla każdego D ∈ δ (E) mamy D ∩ E ∈ δ (E), czyli E ∈ DD, więc E ⊆ DD i δ (E) ⊆ DD
dla dowolnego D. To kończy dowód.

2. Miary i premiary
2025-10-13
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Definicja 8. Niech A ⊆ P (X). Dowolną funkcję µ : A → [0,∞] nazywamy funkcją zbioru.

µ jest skończenie addytywna, jeśli dla dowolnych parami rozłącznych A1, . . . , An ∈ A takich, że
A1 ∪ . . . ∪An ∈ A mamy µ (

⋃n
i=1Ai) =

∑n
i=1 µ (Ai).

µ jest przeliczalnie addytywna, jeśli dla rodziny parami rozłącznych zbiorów (An)
∞
n=1 ⊆ A takich,

że
⋃∞
n=1An ∈ A mamy µ (

⋃∞
n=1An) =

∑∞
n=1 µ (An).

Uwaga. Jeśli µ jest przeliczalnie addytywna i ∅ ∈ A, to µ jest skończenie addytywna.

Jeśli ∅ ∈ A i µ ̸≡ ∞, to µ (∅) = 0, bo dla A ∈ A takiego, że µ (A) <∞ mamy µ (A) = µ (A ∪ ∅) =
µ (A) + µ (∅), czyli µ (∅) = 0.

Definicja 9. Mówimy, że µ : R → [0,∞] jest:

• premiarą, jeśli R jest pierścieniem, µ (∅) = 0 i µ jest przeliczalnie addytywna,

• premiarą skończenie addytywną (treścią), jeśliR jest pierścieniem, µ (∅) = 0 i µ jest skończenie
addytywna,

• miarą, jeśli µ jest premiarą i R jest σ-algebrą,

• miarą skończenie addytywną, jeśli µ jest premiarą skończenie addytywną i R jest algebrą.

Przykład. Przy R = P (X) dla ustalonego x ∈ X delta Diraca δx (A) =

{
1, x ∈ A
0, x /∈ A

jest miarą.

Definicja 10. Parę (X,A) nazywamy przestrzenią mierzalną, jeśli A jest σ-algebrą nad X. Trójkę
(X,A, µ) nazywamy dodatkowo przestrzenią z miarą, jeśli µ : A → [0,∞] jest miarą.

Przestrzeń z miarą jest:

• skończona, jeśli µ (X) <∞,

• σ-skończona, jeśli istnieje taka rodzina (An)
∞
n=1, że µ (An) <∞ i

⋃
An = X,

• probabilistyczna, jeśli µ (X) = 1.

Przykład. 1. Jeśli A ⊆ B jest pod-σ-algebrą a (X,B, µ) jest przestrzenią z miarą, to (X,A, µ|A)
jest przestrzenią z miarą.

2. Jeśli Y ⊆ X, to (Y,BY , µ|BY
) jest przestrzenią z miarą.

3. Jeśli X = R, A = {E ⊆ R : |E| ≤ ℵ0 ∨ |Ec| ≤ ℵ0}, to µ (E) =

{
0, |E| ≤ ℵ0
1, |Ec| ≤ ℵ0

jest miarą.

4. Jeśli X = N, A = {E ⊆ N : |E| < ℵ0 ∨ |Ec| < ℵ0}, to µ (E) =

{
0, |E| < ℵ0
1, |Ec| < ℵ0

jest miarą

skończenie addytywną.

5. Dla stałych αn > 0 i miar µn funkcja
∑
αnµn jest miarą.

Propozycja 5. Każda skończenie addytywna premiara na pierścieniu R spełnia:

1. ∀A,B∈R µ (A ∪B) + µ (A ∩B) = µ (A) + µ (B),

2. ∀A,B∈R A ⊆ B =⇒ µ (A) ≤ µ (B),

3. ∀A,B∈R A ⊆ B,µ (B) <∞ =⇒ µ (B \A) = µ (B)− µ (A),

4. ∀A1,...,An∈R µ (
⋃n
i=1Ai) ≤

∑n
i=1 µ (Ai),

5. Dla każdej rodziny zbiorów parami rozłącznych (An)
∞
n=1 ⊆ R takiej, że

⋃
An ∈ R zachodzi

µ (
⋃
An) ≥

∑
µ (An).
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Dowód. 1. Mamy µ (A) = µ (A \B) + µ (A ∩B), µ (B) = µ (B \A) + µ (A ∩B), µ (A ∪B) =
µ (A \B) + µ (B \A) + µ (A ∩B).

2. µ (B) = µ (A) + µ (B \A) ≥ µ (A).

3. Z poprzedniego.

4. Dla Bi = Ai \
⋃i−1
j=1Aj mamy µ (

⋃n
i=1An) = µ (

⋃n
i=1Bi) =

∑n
i=1 µ (Bi) ≤

∑n
i=1 µ (Ai).

5. Mamy
∑N
n=1 µ (An) = µ

(⋃N
n=1An

)
≤ µ (

⋃∞
n=1An). Przejście N →∞ daje tezę.

Definicja 11. Mówimy, że ciąg zbiorów (En)
∞
n=1 zbiega od dołu do E (co oznaczamy En ↗ E), jeśli

E1 ⊆ E2 ⊆ . . . i
⋃∞
n=1En = E. Podobnie ciąg zbiega od góry do E (oznaczenie En ↘ E), jeśli

E1 ⊇ E2 ⊇ . . . i
⋂∞
n=1En = E.

Twierdzenie 3. Dla premiary skończenie addytywnej na pierścieniu R rozważmy następujące wa-
runki:

1. µ jest premiarą.

2. Jeśli ∀n≥1 An ∈ R, A ∈ R i An ↗ A, to µ (An)→ µ (A).

3. Jeśli ∀n≥1 An ∈ R, A ∈ R, ∃n0 µ (An0) <∞ i An ↘ A, to µ (An)→ µ (A).

4. Jeśli ∀n≥1 An ∈ R, ∃n0
µ (An0

) <∞ i An ↘ ∅, to µ (An)→ 0.

Wówczas zachodzi [(1) ⇐⇒ (2)] =⇒ [(3) ⇐⇒ (4)]. Dodatkowo jeśli µ jest skończona na R
(zawsze przyjmuje skończone wartości), to wszystkie warunki są równoważne.

Dowód. (1 =⇒ 2) Niech A0 = ∅, Bn = An \ An−1 dla n ≥ 1. Zbiory Bn ∈ R są parami rozłączne
i sumują się do A oraz An = B1 ∪ . . . ∪Bn. Mamy

µ (A) = µ

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

µ (Bn) = lim
N→∞

N∑
n=1

µ (Bn) = lim
N→∞

µ (B1 ∪ . . . ∪BN ) = lim
N→∞

µ (AN ) .

(2 =⇒ 1) Weźmy rodzinę (An)
∞
n=1 parami rozłącznych zbiorów taką, że A =

⋃∞
n=1An ∈ R. Wtedy

dla Bn = A1 ∪ . . .∪An mamy Bn ∈ R i Bn ↗ A. Zatem µ (Bn) =
∑n
j=1 µ (Aj) jednocześnie zbiega

do µ (A) i
∑∞
j=1 µ (Aj).

(2 =⇒ 3) Bez straty ogólności n0 = 1. Wtedy µ (A1 \An) = µ (A1)− µ (An). Dodatkowo An ↘ A
implikuje A1 \An ↗ A1 \A. Zatem µ (A1 \An)→ µ (A1 \A) = µ (A1)− µ (A) oraz µ (A1 \An)→
µ (A1)− limn→∞ µ (An).

(3 =⇒ 4) Oczywiste.

(4 =⇒ 3) Mamy An \A↘ ∅, więc µ (An)− µ (A) = µ (An \A)→ 0.

(4 =⇒ 2) Z An ↗ A dostajemy A \An ↘ ∅, ze skończoności µ spełnione są założenia (4) i mamy
µ (A)− µ (An) = µ (A \An)→ 0.

Twierdzenie 4 (O jedyności miary). Niech A będzie σ-algebrą naX generowaną przez taką ∩-stabilną
rodzinę G, że istnieje ciąg (Gn)

∞
n=1 ⊆ G taki, że Gn ↗ X (taki ciąg nazywamy wyczerpującym).

Jeżeli µ, ν są takimi miarami na (X,A), że ∀A∈G µ (A) = ν (A) oraz ∀n≥1 µ (Gn) = ν (Gn) <∞, to
µ = ν.

Jeżeli µ (X) = ν (X) <∞, to założenie o istnieniu odpowiedniego ciągu można opuścić (bo wówczas
Gn = X działa).

Dowód. Niech Dn = {A ∈ A : µ (Gn ∩A) = ν (Gn ∩A)}. Mamy G ⊆ Dn dla każdego n, bo G jest
∩-stabilna. Sprawdzimy, że Dn jest układem Dynkina.
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X ∈ Dn jest oczywiste, jeśli A ∈ Dn, to

µ (Gn ∩Ac) = µ (Gn \A) = µ (Gn)− µ (Gn ∩A) = ν (Gn)− ν (Gn ∩A) = . . . = ν (Gn ∩Ac) .

Ustalmy parami rozłączne (Ak)
∞
k=1 ⊆ Dn. Mamy

µ

(
Gn ∩

∞⊔
k=1

Ak

)
= µ

( ∞⊔
k=1

Gn ∩Ak

)
=

∞∑
k=1

µ (Gn ∩Ak) =
∞∑
k=1

ν (Gn ∩Ak) = ν

(
Gn ∩

∞⊔
k=1

Ak

)
.

Zatem Dn jest układem Dynkina i A = σ (G) = δ (G) ⊆ Dn ⊆ A, więc Dn = A i µ (A ∩Gn) =
ν (A ∩Gn) dla każdego n i A ∈ A. Mamy A ∩Gn ↗ A, więc

µ (A) = lim
n→∞

µ (A ∩Gn) = lim
n→∞

ν (A ∩Gn) = ν (A) .

3. Konstrukcja Carathéodory’ego
2025-10-20

Definicja 12. S ⊆ P (X) nazywamy półpierścieniem na X, jeśli

1. ∅ ∈ S,

2. S jest ∩-stabilna,

3. Dla A,B ∈ S zbiór A \B jest sumą rozłączną skończenie wielu elementów S.

Przykład. 1. J = {[a, b) : a, b ∈ R} jest półpierścieniem na R.

2. Jeśli (X,A), (Y,B) są przestrzeniami mierzalnymi, to {A×B ⊆ X × Y : A ∈ A, B ∈ B} jest
półpierścieniem.

Definicja 13. Funkcję λ : P (X)→ [0,∞] nazywamy miarą zewnętrzną, jeśli

1. λ (∅) = 0,

2. Jeśli A ⊆ B ⊆ X, to λ (A) ≤ λ (B),

3. Jeśli (An)
∞
n=1 ⊆ P (X), to λ (

⋃∞
n=1An) ≤

∑∞
n=1 λ (An).

Propozycja 6. Jeżeli ν jest premiarą na półpierścieniu S ⊆ P (X), to

µ∗ (A) = inf

{ ∞∑
k=1

ν (Sk) : (Sk)
∞
k=1 ⊆ S, A ⊆

∞⋃
k=1

Sk

}
.

jest miarą zewnętrzną taką, że µ∗|S = ν.

Dowód. Niech S ∈ S. Wtedy mamy µ∗ (S) ≤ ν (S)+ ν (∅)+ . . . = ν (S). Z drugiej strony rozważmy
dowolne (Sk)

∞
k=1 ⊆ S takie, że S ⊆

⋃∞
k=1 Sk. Mamy S =

⋃∞
k=1 S ∩Sk i każde S ∩Sk jest elementem

S. Definiujemy rodzinę rozłącznych zbiorów poprzez D1 = S ∩ S1, D2 = (S ∩ S2) \ S1, D3 =
((S ∩ S3) \ S2)\S1 i tak dalej. Każdy z tych zbiorów jest sumą rozłączną skończenie wielu elementów
S. Zatem mamy S =

⊔∞
m=1Bm dla pewnych rozłącznych Bm ∈ S.

Dla każdego Bm istnieje takie Sk(m), że Bm ⊆ Sk(m). Zauważmy, że Sk \
⋃
m:k(m)=k Bm jest sumą

rozłączną elementów (Ei)
ℓ
i=1 ⊆ S. Wobec tego ν (Sk) =

∑ℓ
i=1 ν (Ei) +

∑
m:k(m)=k ν (Bm), czyli∑

m:k(m)=k ν (Bm) ≤ ν (Sk).

Mamy ν (S) =
∑∞
m=1 ν (Bm) =

∑∞
k=1

∑
m:k(m)=k ν (Bm) ≤

∑∞
k=1 Sk. Biorąc infimum dostajemy

ν (S) ≤ µ∗ (S). To dowodzi, że µ∗|S = ν i µ∗ (∅) = 0.

Jeśli A ⊆ B, to dla każdego (Sk)
∞
k=1 ⊆ S takiego, że B ⊆

⋃∞
k=1 Sk mamy też A ⊆

⋃∞
k=1 Sk.

Wobec tego µ∗ (A) ≤ µ∗ (B). Pozostało pokazać σ-subaddytywność. Niech (An)
∞
n=1 ⊆ S. Niech
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(Sn,k)
∞
k=1 ⊆ S będzie pokryciem An. Wtedy (Sn,k)

∞
n,k=1 pokrywa (An)

∞
n=1, a więc µ∗ (

⋃∞
n=1An) ≤∑∞

n=1

∑∞
k=1 ν (Sn,k). Biorąc infimum dla każdego k dostajemy µ∗ (

⋃∞
n=1An) ≤

∑∞
n=1 µ

∗ (An).

Definicja 14. Niech λ będzie miarą zewnętrzną. Mówimy, że A ⊆ X spełnia warunek Carathéo-
dory’ego, jeśli dla każdego Q ⊆ X mamy λ (Q ∩A) + λ (Q \A) = λ (Q).

Uwaga. Z subaddytywności miary zewnętrznej zawsze jest λ (Q) ≤ λ (Q ∩A) + λ (Q \A). Do tego
dla λ (Q) = ∞ druga nierówność też zawsze zachodzi. Zatem warunek Carathéodory’ego jest rów-
noważny temu, ze dla każdego Q ⊆ X takiego, że λ (Q) <∞ mamy λ (Q) ≥ λ (Q ∩A) + λ (Q \A).

Propozycja 7. Niech λ będzie miarą zewnętrzną. Rodzina

A = {A ⊆ X : A spełnia warunek Carathéodory’ego}

jest σ-algebrą taką, że λ|A jest miarą. Zbiór A (λ) nazywamy σ-algebrą zbiorów λ-mierzalnych.

Dowód. Oczywiście ∅ ∈ A. Zapisując λ (Q ∩A) + λ (Q \A) = λ (Q ∩A) + λ (Q ∩Ac) widzimy, ze
A jest zamknięta na branie dopełnień. Ustalmy A,B ∈ A. Zachodzi poniższa równość.

λ (Q) = λ (Q ∩A)+λ (Q ∩Ac) = λ (Q ∩A ∩B)+λ (Q ∩A ∩Bc)+λ (Q ∩Ac ∩B)+λ (Q ∩Ac ∩Bc)

Podstawiając pod Q zbiór Q ∩ (A ∪B) dostajemy

λ (Q ∩ (A ∪B)) = λ (Q ∩A ∩B) + λ (Q ∩Ac ∩B) + λ (Q ∩A ∩Bc) ,

czyli λ (Q) = λ (Q ∩ (A ∪B)) + λ (Q ∩ (A ∪B)
c
), więc A ∪B ∈ A.

Załóżmy, że A ∩ B = ∅. Wtedy λ (Q ∩ (A ∪B)) = λ (Q ∩A) + λ (Q ∩B), bo Ac ⊆ B i Bc ⊆ A.
Indukcyjnie dla rodziny rozłącznych zbiorów {An}nk=1 mamy λ (Q ∩

⊔n
k=1Ak) =

∑n
k=1 λ (Q ∩Ak).

Niech (An)
∞
n=1 ⊆ A będzie rodziną rozłącznych zbiorów. Niech Bn =

⊔n
k=1Ak. Oznaczmy A =⊔∞

n=1An =
⋃∞
n=1Bn. Mamy Bn ∈ A, więc

λ (Q) = λ (Q ∩Bn) + λ (Q ∩Bcn) =
n∑
k=1

λ (Q ∩Ak) + λ (Q ∩Bcn) ≥
n∑
k=1

λ (Q ∩Ak) + λ (Q ∩Ac) ,

gdzie nierówność to monotoniczność λ. Przechodząc n→∞ dostajemy

λ (Q) ≥
∞∑
k=1

λ (Q ∩Ak) + λ (Q ∩Ac) ≥ λ

(
Q ∩

∞⊔
k=1

Ak

)
+ λ (Q ∩Ac) = λ (Q ∩A) + λ (Q ∩Ac) ,

gdzie druga nierówność to σ-subaddytywność λ. Z uwagi do warunku Carathéodory’ego mamy
λ (Q) = λ (Q ∩A) + λ (Q ∩Ac). Widzimy więc, że A ∈ A. Zatem A jest zamkniętym na sumy
układem Dynkina, czyli σ-algebrą.

Dodatkowo poprzednia równość implikuje λ (Q ∩A)+λ (Q ∩Ac) =
∑∞
k=1 λ (Q ∩Ak)+λ (Q ∩Ac),

więc mamy przeliczalną addytywność λ|A (podstawiając Q = X). W szczególności λ|A jest miarą.

Twierdzenie 5 (Carathéodory). Jeżeli ν jest premiarą na półpierścieniu S ⊆ P (X), to istnieje taka
miara µ na σ (S), że µ|S = ν. Jeżeli istnieje taki ciąg (Sn)

∞
n=1 ⊆ S, że Sn ↗ X i ν (Sn) < ∞ dla

każdego n ≥ 1, to µ jest jedyna.

Dowód. Zdefiniujmy miarę zewnętrzną

µ∗ (A) = inf

{ ∞∑
k=1

ν (Sk) : (Sk)
∞
k=1 ⊆ S, A ⊆

∞⋃
k=1

Sk

}
.

oraz σ-algebrę A zbiorów spełniających warunek Carathéodory’ego. Wystarczy pokazać S ⊆ A, bo
wtedy σ (S) ⊆ A i funkcja µ∗|σ(S) jest miarą zgodną z ν. Jej jedyność wynika wprost z twierdzenia
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o jedyności miary.

Ustalmy A ∈ S i wybierzmy dowolne Q ⊆ X. Możemy założyć, że µ∗ (Q) <∞. Zatem dla każdego
ε > 0 istnieje takie (Qn)

∞
n=1 ⊆ S, że Q ⊆

⋃∞
n=1Qn i µ∗ (Q) + ε ≥

∑∞
n=1 ν (Qn). Mamy A ∩Qn ∈ S

oraz Qn\A jest skończoną sumą rozłączną elementów S, czyli ν (Qn) = ν (A ∩Qn)+
∑k(n)
i=1 ν (Bn,i),

gdzie {Bn,i}k(n)i=1 są rozłączne i
⊔k(n)
i=1 Bn,i = Qn \A. Zatem

µ∗ (Q) + ε ≥
∞∑
n=1

ν (Qn) =

∞∑
n=1

ν (A ∩Qn) +
∞∑
n=1

k(n)∑
i=1

ν (Bn,i) ≥ µ∗ (Q ∩A) + µ∗ (Q \A) ,

gdzie ostatnia nierówność wynika z faktu, że Q ∩A ⊆
⋃∞
n=1Qn ∩A oraz Q \A ⊆

⋃∞
n=1

⋃k(n)
i=1 Bn,i.

Zatem A spełnia warunek Carathéodory’ego (przechodzimy ε→ 0), czyli S ⊆ A, co kończy.

Definicja 15. Niech (X,A, µ) będzie przestrzenią z miarą. Dla każdego A ⊆ X definiujemy µ0 (A) =
inf {µ (B) : A ⊆ B,B ∈ A}, co jest miarą zewnętrzną.

Definicja 16. Miarę zewnętrzną µ∗ na X nazywamy regularną, jeśli dla każdego Y ⊆ X istnieje
takie A ∈ A (µ∗), że Y ⊆ A i µ∗ (Y ) = µ∗ (A).

Propozycja 8. Jeżeli (X,A, µ) jest przestrzenią z miarą, to µ0 jest regularna. Mamy µ0|A = µ i
A ⊆ A

(
µ0
)
.

Dowód. Z monotoniczności miary natychmiast mamy µ0|A = µ. Ustalmy E ∈ A i wybierzmy
dowolne T ⊆ X. Dla każdego A ∈ A takiego, że T ⊆ A mamy µ (A) = µ (A ∩ E) + µ (A \ E) ≥
µ0 (T ∩ E) + µ0 (T \ E). Biorąc infimum po wszystkich A ⊇ T dostajemy µ0 (T ) ≥ µ0 (T ∩ E) +
µ0 (T \ E), czyli E spełnia warunek Carathéodory’ego i A ⊆ A

(
µ0
)
. Pozostało pokazać regularność.

Ustalmy dowolne Y ⊆ X. Jeśli µ0 (Y ) =∞, to musi być µ0 (X) =∞, więc µ0 (Y ) = µ0 (X). Dalej
zakładamy µ0 (Y ) < ∞. Dla każdego n ∈ N+ znajdziemy takie An ∈ A, że µ (An) ≤ µ0 (Y ) + 1

n
oraz Y ⊆ An. Wtedy A =

⋂∞
n=1An ∈ A oraz Y ⊆ A. Teraz

µ0 (Y ) ≤ µ (A) = lim
n→∞

µ

(
n⋂
i=1

Ai

)
≤ lim
n→∞

µ (An) ≤ µ0 (Y ) .

Definicja 17. Oznaczmy ∆ = {α : P (X)→ (0,∞] : α jest miarą zewnętrzną na X} oraz niech Λ =
{(A, µ) : (X,A, µ) jest przestrzenią z miarą}. Definiujemy (·)c : ∆ ∋ α → (A (α) , αc) ∈ Λ, gdzie
αc = α|A(α) oraz (·)0 : Λ ∋ (A, µ)→ µ0 ∈ ∆.

Twierdzenie 6. Dla każdego α ∈ ∆ mamy (αc)
0
= α wtedy i tylko wtedy, gdy α jest regularna.

Dla każdego (·, µ) ∈ Λ mamy
((
µ0
)
c

)0
= µ0. Dla każdego (·, µ) ∈ Λ mamy

(
µ0
)
c
= µ wtedy i tylko

wtedy, gdy istnieje regularna γ ∈ ∆ z γc = µ.

4. Miara Lebesgue’a
2025-10-27

Definicja 18. Niech d ≥ 1. Dla dwóch elementów a = (a1, . . . , ad) , b = (b1, . . . , bd) ∈ Rd definiujemy
[a, b) =

∏d
j=1[aj , bj). Oznaczmy Id =

{
[a, b) ⊆ Rd : a, b ∈ Rd

}
.

Lemat 1. Jeśli S ⊆ P (X) i S ′ ⊆ P (Y ) są półpierścieniami, to S × S ′ = {S × S′ : S ∈ S, S′ ∈ S ′}
jest półpierścieniem na X × Y .

Dowód. Mamy ∅ = ∅ × ∅ ∈ S × S ′. Jeśli A × A′, B × B′ ∈ S × S ′, to (A×A′) ∩ (B ×B′) =
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(A ∩B)× (A′ ∩B′) ∈ S × S ′. Do tego

(A×A′) \ (B ×B′) = ((A \B)× (A′ \B′)) ⊔ ((A ∩B)× (A′ \B′)) ⊔ ((A \B)× (A′ ∩B′)) .

Mamy A\B =
⊔k
i=1 Ci oraz A′ \B′ =

⊔ℓ
j=1Dj , gdzie {Ci}ki=1 ⊆ S, {Dj}ℓj=1 ⊆ S

′ są rodzinami roz-
łącznych zbiorów. Każdy ze składników, na które rozbiliśmy (A×A′)\ (B ×B′) jest więc rozłączną
sumą elementów S × S ′, co kończy dowód.

Lemat 2. Id jest półpierścieniem.

Dowód. Dla d ≥ 2 mamy Id = Id−1 × I1, więc wystarczy pokazać tezę dla I1. Mamy ∅ = [1, 1) ∈ I1,
Dla a, b, a′, b′ ∈ R mamy [a, b) ∩ [a′, b′) = [max (a, a′) ,min (b, b′)) ∈ I1. Do tego

[a, b) \ [a′, b′) =


[a, b), b ≤ a′ ∨ b′ ≤ a ∨ b′ ≤ a′

[a, a′), a ≤ a′ < b ≤ b′

[b′, b), a′ ≤ a < b′ ≤ b
[a, a′) ∪ [b′, b), a ≤ a′ < b′ ≤ b

.

Definicja 19. Niech funkcja λd : Id → [0,∞) będzie dana wzorem

λd ([a, b)) =

{∏d
j=1 (bj − aj) , [a, b) ̸= ∅

0, [a, b) = ∅
.

Lemat 3. λd jest premiarą na Id.
Dowód. Udowodnimy dla d = 1, większe wymiary to tylko techniczne uogólnienie. Dla a < a′ ≤
b < b′ mamy λ ([a, b′)) = b′ − a ≤ b′ − a′ + b − a = λ ([a′, b′)) + λ ([a, b)). Uogólniając na więcej
przedziałów, jeśli [a, b) ⊆

⋃n
i=1[ai, bi), to λ ([a, b)) ≤

∑n
i=1 λ ([ai, bi)).

Załóżmy, że [a, b) =
⊔∞
n=1 In, gdzie In = [an, bn). Zdefiniujmy In,ε = [an − 2−nε, bn) oraz I0n,ε =

(an − 2−nε, bn). Mamy [a, b − ε) ⊆ [a, b− ε] ⊆
⋃∞
n=1 I

0
n,ε. To ostatnie jest pokryciem otwartym

zbioru zwartego, więc istnieje N = N (ε) takie, że [a, b− ε) ⊆
⋃N
n=1 I

0
n,ε ⊆

⋃N
n=1 In,ε Teraz mamy

0 ≤ λ ([a, b))−
N∑
n=1

λ ([an, bn)) = ε+ λ ([a, b− ε))−
N∑
n=1

λ (In,ε) +

N∑
n=1

ε

2n
≤ 2ε,

gdzie pierwsza nierówność wynika z podobnych własności λ jak w pierwszym akapicie, a druga to
zastosowanie udowodnionej w nim własności. Ta nierówność zachodzi dla każdego N ≥ N (ε), więc
przechodząc N →∞ a następnie ε→ 0 mamy tezę.

Definicja 20. d-wymiarową miarą Lebesgue’a na Rd nazywamy miarę λd otrzymaną w wyniku
zastosowania konstrukcji Carathéodory’ego do λd na Id. Miara ta jest jedyna na σ

(
Id
)
, bo mamy

odpowiedni ciąg
(∏d

j=1[−n, n)
)∞
n=1
↗ Rd. Zbiory λd-mierzalne nazywamy mierzalnymi w sensie

Lebesgue’a na Rd. Zbiór zbiorów λd-mierzalnych oznaczamy L
(
λd
)
.

Definicja 21. Niech τ będzie topologią na X. Zbiór B (X) = σ (τ) nazywamy σ-algebrą zbiorów
borelowskich na (X, τ).

Lemat 4. Rodzina B
(
Rd
)

jest generowana przez każdą z następujących rodzin zbiorów:

1. zbiory domknięte w Rd,

2. zbiory zwarte w Rd,

3. Id,
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4.
{
Q ∈ Id : Q = [a, b),∀j=1,...,d aj , bj ∈ Q

}
.

Dowód. 1. σ-algebry generowane odpowiednio przez zbiory otwarte i domknięte zawierają ich
dopełnienia, czyli odpowiednio zbiory domknięte i otwarte.

2. Każdy zbiór zwarty jest domknięty, a dla zbioru domkniętego D zbiór D∩K (0, n) jest zwarty,
a suma takich zbiorów to D.

3. Mamy [a, b) =
⋃∞
n=1[a, b −

1
n ] oraz [a, b] =

⋂∞
n=1[a, b +

1
n ) i możemy tak zrobić na każdej

współrzędnej.

4. Mamy [a, b) =
⋂∞
m=1

⋃∞
n=1[am, bn), gdzie am ∈

(
a− 1

m , a
)
, bn ∈

(
b− 1

n , b
)

i am, bn ∈ Q.

Uwaga. Mamy B
(
Rd
)
= σ

(
Id
)
⊆ A

(
λd

0
)
. Zatem możemy mówić o mierze λd zdefiniowanej na

B
(
Rd
)

poprzez rozszerzenie premiary zdefiniowanej na Id.

Lemat 5. Rodzina B (R) jest generowana przez każdą z następujących rodzin zbiorów:

1. {(−∞, a) : a ∈ D},

2. {(−∞, a] : a ∈ D′},

3. {[b,+∞) : b ∈ D′′},

4. {(b,+∞) : b ∈ D′′′},

gdzie D,D′, D′′, D′′′ ⊆ R są gęste.

Dowód. Mamy (a, b) = (−∞, b) ∩ (−∞, a]c. Możemy zapisać (−∞, b) =
⋂∞
n=1(−∞, bn], gdzie

bn ∈
(
b, b+ 1

n

)
∩ D′ oraz (−∞, a] =

⋃∞
n=1 (−∞, an), gdzie an ∈

(
an − 1

n , an
)
∩ D. W każdym

z tych przeliczalnych przecięć i sum prawy kraniec może być zarówno otwarty, jak i domknięty. W
związku z tym (1) i (2) generują przedziały otwarte, a każdy zbiór otwarty jest przeliczalną sumą
przedziałów otwartych (przeliczalną, bo jeśli dla każdego q ∈ Q zawartego w zbiorze otwartym
weźmiemy maksymalny przedział w nim zawarty zawierający q, to dostaniemy przeliczalną sumę
przedziałów). Zatem (1) i (2) generują przedziały otwarte, a generowanie w drugą stronę jest proste.
(3) i (4) są dopełnieniami (1) i (2).

5. Miary zupełne
2025-11-03

Definicja 22. Mówimy, że miara µ jest miarą zupełną na (X,A), jeśli dla każdego A ∈ A takiego,
że µ (A) = 0 mamy B ∈ A dla każdego B ⊆ A.

Twierdzenie 7. Jeżeli
(
X,A (µ∗) , µ∗|A(µ∗)

)
jest przestrzenią mierzalną otrzymaną poprzez zastoso-

wanie konstrukcji Carathéodory’ego do miary zewnętrznej µ∗, to µ∗ jest zupełna na A (µ∗).

Dowód. Niech A ⊆ X będzie taki, że µ∗ (A) = 0. Mamy µ∗ (T ∩A)+µ∗ (T ∩Ac) = 0+µ∗ (T ∩Ac) ≤
µ∗ (T ), gdzie oba przejścia wynikają z monotoniczności miary zewnętrznej. Zatem A spełnia warunek
Carathéodory’ego i A ∈ A (µ∗). Do tego dla każdego B ⊆ A mamy µ∗ (B) = 0, więc B ∈ A (µ∗), co
daje tezę.

Definicja 23. Rodzinę N ⊆ P (X) nazywamy σ-ideałem, jeżeli

1. ∅ ∈ N .

2. Jeśli A ∈ N i B ⊆ A, to B ∈ N .

3. Jeżeli (An)
∞
n=1 ⊆ N , to

⋃∞
n=1An ∈ N .
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Definicja 24. Niech (X,A, µ) będzie przestrzenią z miarą. Zbiór

N (µ) = {B ⊆ X : ∃A∈A µ (A) = 0 ∧B ⊆ A}

nazywamy σ-ideałem zbiorów miary zero.

Propozycja 9. N (µ) jest σ-ideałem.

Dowód. Oczywiście N (µ) jest zamknięty na branie podzbiorów i ∅ ∈ N (µ). Jeśli (Bn)
∞
n=1 ⊆ N (µ),

to istnieje ciąg (An)
∞
n=1 ⊆ A taki, ze Bn ⊆ An i µ (An) = 0. Mamy µ (

⋃∞
n=1An) ≤

∑∞
n=1 µ (An) = 0,

więc
⋃∞
n=1Bn ∈ N (µ).

Definicja 25. Niech (X,A, µ) będzie przestrzenią z miarą. Zbiór

A∗
µ = {B ⊆ X : ∃A∈A A△B ∈ N (µ)}

nazywamy σ-algebrą zbiorów prawie należących do A.

Propozycja 10. A∗
µ jest σ-algebrą.

Dowód. Mamy ∅△∅ = ∅, więc ∅ ∈ A∗
µ. Jeśli B ∈ A∗

µ, to istnieje A ∈ A takie, że A△B ∈ N (µ).
Mamy Ac△Bc = A△B, więc Bc ∈ A∗

µ. Jeśli (Bn)
∞
n=1 ⊆ A∗

µ, to istnieje ciąg (An)
∞
n=1 ⊆ A taki,

że An△Bn ∈ N (µ). Mamy (
⋃∞
n=1An)△ (

⋃∞
n=1Bn) ⊆

⋃∞
n=1 (An△Bn) ∈ N (µ), więc

⋃∞
n=1Bn ∈

A∗
µ.

Propozycja 11. Jeśli µ jest skończona na (X,A), to dla C,D ∈ Amamy |µ (C)− µ (D)| ≤ µ (C△D).

Dowód. Mamy C ⊆ D ∪C \D, więc µ (C) ≤ µ (D) + µ (C \D), czyli µ (C)− µ (D) ≤ µ (C \D) ≤
µ (C△D). Drugiej nierówności dowodzimy identycznie.

Definicja 26. Mówimy, że A,B ∈ A są µ-prawie równe, jeżeli µ (A△B) = 0. Relację bycia µ-prawie
równym oznaczamy µ

=.

Propozycja 12. µ
= jest relacją równoważności.

Dowód. Zwrotność i symetria są oczywiste. Jeśli A µ
= B i B µ

= C, to A△C ⊆ (A△B) ∪ (B△C),
więc µ (A△C) = 0 i A µ

= C.

Definicja 27. Funkcję dµ (A,B) = µ (A△B) nazywamy pseudometryką. Jest ona metryką na A⧸µ
=

.

Lemat 6. Niech (X,A, µ) będzie przestrzenią z miarą. Wtedy A∗
µ = σ (A ∪N (µ)).

Dowód. Niech B ∈ A∗
µ. Wtedy istnieje A ∈ A takie, że A△B ∈ N (µ), a wtedy też A \B,B \ A ∈

N (µ). Zatem B = (A ∪ (B \A)) \ (A \B) ∈ σ (A ∪N (µ)), czyli A∗
µ ⊆ σ (A ∪N (µ)). Wiemy, że

A∗
µ jest σ-algebrą i A,N (µ) ⊆ A∗

µ, więc mamy też drugie zawieranie.

Definicja 28. Niech (X,A, µ) będzie przestrzenią z miarą. Definiujemy µ : A∗
µ → [0,+∞] wzorem

µ (B) = µ (A), gdzie A ∈ A jest takie, że A△B ∈ N (µ). Taka definicja jest poprawna, bo różne A
spełniające tę własność różnią się o zbiór miary 0.

Twierdzenie 8. µ jest miarą zupełną na A∗
µ i µ|A = µ.

Dowód. Jeśli dla A ∈ A∗
µ mamy B,C ∈ A takie, że A△B,A△C ∈ N (µ), to zachodzi B△C =

A△B△A△C ∈ N (µ), więc µ (B) = µ (C) i µ jest poprawnie określone oraz µ|A = µ.

Niech (An)
∞
n=1 ⊆ A∗

µ będą parami rozłączne oraz niech Bn ∈ A będzie takie, ze Cn = An△Bn ∈
N (µ). Dla i ̸= j mamy Bi∩Bj ⊆ Ci∪Cj , bo jeśli x ∈ Bi∩Bj należy do Ai, to nie należy do Aj , więc
albo x ∈ Cj , albo x ∈ Ci. Zatem µ (Bi ∩Bj) = 0. NiechDn = Bn\

⋃n−1
i=1 Bi. Mamy µ (Dn) = µ (Bn),
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bo µ
(
Bn ∩

⋃n−1
i=1 Bi

)
= 0. Zatem µ (

⋃∞
n=1Bn) = µ (

⋃∞
n=1Dn) =

∑∞
n=1 µ (Dn) =

∑∞
n=1 µ (Bn),

czyli µ (
⋃∞
n=1An) =

∑∞
n=1 µ (An) i µ faktycznie jest miarą.

Jeśli µ (B) = 0, to istnieje A ∈ A takie, że A△B ∈ N (µ) i µ (A) = 0. Dla każdego C ⊆ B jest
A△C ∈ N (µ), więc C ∈ A∗

µ, co daje zupełność.

Wniosek. Jeśli (X,A, µ) i (X,B, ν) są przestrzeniami z miarą takimi, że ν jest zupełna, A ⊆ B i
ν|A = µ, to A∗

µ ⊆ B i ν|A∗
µ
= µ.

Twierdzenie 9. Jeżeli µ jest miarą σ-skończoną, to A
(
µ0
)
= A∗

µ = σ (A ∪N (µ)).

Dowód. Mamy A∗
µ ⊆ A

(
µ0
)
, bo µ0|A(µ0) jest zupełna. Niech X =

⋃∞
n=1En, gdzie En ∈ A są takie,

że µ (En) < ∞. Ustalmy E ∈ A
(
µ0
)
. Do pokazania E ∈ A∗

µ wystarczy pokazać E ∩ En ∈ A∗
µ,

zatem można bez straty ogólności założyć, że µ jest skończona. Z definicji µ0 (E) dostajemy ciąg
(An)

∞
n=1 ⊆ A taki, że µ (An) → µ0 (E) oraz E ⊆ An. Możemy założyć, że ten ciąg jest zstępujący

(przecinamy ze sobą pierwsze elementy), co da nam An ↘ A dla pewnego A ∈ A i µ0 (E) =
µ (A) = µ0 (A) = µ0 (A ∩ E) + µ0 (A \ E), gdzie ostatnia równość to warunek Carathéodory’ego.
Mamy A ∩ E = E, więc z poprzednich równości wynika µ0 (A \ E) = 0. Podobnie jak przedtem
µ0 (A \ E) = µ0 (A′) dla pewnego A′ ∈ A, zatem A \ E ∈ N (µ). Równość E = A \ (A \ E) daje
E ∈ σ (A ∪N (µ)), co kończy dowód.

Wniosek. Mamy L
(
λd
)
=
(
B
(
Rd
))∗
λd . Miara Lebesgue’a otrzymana przedtem w konstrukcji Cara-

théodory’ego może też zostać uzyskana jako uzupełnienie
(
Rd,B

(
Rd
)
, λd
)
.

Propozycja 13. Zachodzi card
(
B
(
Rd
))

= c oraz card (L (λ)) = 2c.

Dowód. Pierwsza równość wynika z tego, że zbiory borelowskie powstają przez wielokrotne przeli-
czalne przecięcia i sumy przedziałów o końcach wymiernych, a tych jest continuum.

Druga równość wynika z faktu, że zbiór Cantora jest nieprzeliczalny i ma miarę Lebesgue’a 0, więc
wszystkie jego podzbiory również są λ1-mierzalne, co daje nam 2c zbiorów.

Przykład (Vitali). Rozważmy relację równoważności na [0, 1] zadaną przez x ∼ y ⇐⇒ x − y ∈ Q.
Niech V ⊆ [0, 1] zawiera dokładnie jednego reprezentanta każdej klasy równoważności. Niech (rn)

∞
n=1

będzie ciągiem wszystkich liczb z [−1, 1] ∩ Q. Definiujemy Vn = rn + V . Mamy Vn ∩ Vm = ∅ dla
n ̸= m oraz [0, 1] ⊆

⋃∞
n=1 Vn ⊆ [−1, 2]. Gdyby V był λ1-mierzalny, to każdy Vn byłby λ1-mierzalny

oraz λ1 (Vn) = λ1 (V ). Mielibyśmy 1 ≤
∑∞
n=1 λ

1 (V ) ≤ 3, ale ten szereg zbiega do 0 lub +∞ –
sprzeczność.

6. Funkcje mierzalne
2025-11-17

Notacja. Dalej cały czas zakładamy, że (X,A) i (Y,B) to przestrzenie mierzalne.

Definicja 29. Mówimy, że f : X → Y jest (A/B)-mierzalna (lub po prostu mierzalna, jeśli σ-algebry
są znane z kontekstu), jeśli dla każdego B ∈ B mamy f−1 (B) ∈ A.

Jeśli X i Y to przestrzenie topologiczne, to mówimy, że f jest borelowska, jeśli jest (B (X) /B (Y ))-
mierzalna.

Jeśli któraś z σ-algebr jest znana z kontekstu, to ją pomijamy. Czasem piszemy też f : (X,A) →
(Y,B), by podkreślić σ-algebry.

Lemat 7. Złożenie funkcji mierzalnych jest mierzalne.

Dowód. (g ◦ f)−1
(C) = f−1

(
g−1 (C)

)
. Zatem B = g−1 (C) i A = f−1 (B) są w σ-algebrach.
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Lemat 8. Jeśli C ⊆ P (Y ) i σ (C) = B, to f : X → Y jest mierzalna wtedy i tylko wtedy, gdy dla
każdego C ∈ C mamy f−1 (C) ∈ A.

Dowód. ( =⇒ ) Oczywiste.

(⇐= ) Niech D =
{
B ∈ B : f−1 (B) ∈ A

}
. Z założenia C ⊆ D. Łatwo widać, że D jest σ-algebrą.

Wniosek. Jeśli f : X → R, to f jest (A/B (R))-mierzalna wtedy i tylko wtedy, gdy dla każdego
a ∈ Q mamy f−1 ((−∞, a)) ∈ A.

Wniosek. Jeśli X,Y to przestrzenie topologiczne, a f : X → Y jest ciągła, to jest też borelowska.

Definicja 30. Produktem σ-algebr A, B nazywamy A⊗ B = σ ({A×B : A ∈ A, B ∈ B}).

Propozycja 14. Niech X,Y będą przestrzeniami topologicznymi. Zachodzi inkluzja B (X)⊗B (Y ) ⊆
B (X × Y ). Ponadto jeśli X,Y spełniają drugi aksjomat przeliczalności (np. są metryczne i ośrod-
kowe), to mamy równość.

Dowód. Rozważmy D = {A ∈ B (X) : A× Y ∈ B (X × Y )}. Mamy (
⋃∞
i=1An)×Y =

⋃∞
i=1An×Y i

Ac × Y = (A× Y )
c, więc D jest σ-algebrą. Mamy B (X) ⊆ D, bo D zawiera zbiory otwarte. Z tego

wynika, że dla dowolnego A ∈ B (X) mamy A× Y ∈ B (X × Y ). W podobny sposób dla B ∈ B (Y )
mamy X × B ∈ B (Y ). Zatem A × B = (A× Y ) ∩ (X ×B) ∈ B (X × Y ). Z tego wynika żądana
inkluzja.

Ustalmy bazy przeliczalne X,Y – odpowiednio {Un}∞n=1 i {Vn}∞n=1. Rodzina {Ui × Vj : i, j ∈ N+} =
{Wn}∞n=1 jest bazą topologii produktowej, więc dla zbioru otwartego W mamy W =

⋃∞
k=1Wn(k) =⋃∞

k=1 Ui(k) × Vj(k) ∈ B (X)⊗ B (Y ). Z tego wynika B (X × Y ) ⊆ B (X)⊗ B (Y ).

Definicja 31. Niech F ⊆ Y X . Definiujemy σ (F) = σ
({
f−1 (B) : f ∈ F , B ∈ B

})
. Jest to najmniej-

sza σ-algebra, dla której wszystkie funkcje z F są mierzalne. Piszemy σ (f) = σ ({f}).

Twierdzenie 10. Niech (X,A), (Y,B), (Y ′,B′) będą przestrzeniami mierzalnymi. Niech f : X → Y
i f ′ : X → Y ′. Wtedy F = (f, f ′) : X → Y × Y ′ jest (A/B ⊗ B′)-mierzalna wtedy i tylko wtedy,
gdy f i f ′ są mierzalne.

Dowód. ( =⇒ ) Dla B ∈ B mamy B×Y ′ ∈ B⊗B′. Zatem A ∋ F−1 (B × Y ′) = f−1 (B)∩f ′−1 (Y ′) =
f−1 (B), czyli f jest mierzalna. Analogicznie pokazujemy dla f ′.

(⇐= ) Zbiór C = {B ×B′ : B ∈ B, B′ ∈ B′} generuje σ-algebrę produktową. Dla C ∈ C mamy
F−1 (C) = F−1 (B ×B′) = f−1 (B) ∩ f ′−1 (B′) ∈ A.

Wniosek. B ⊗ B′ = σ ({πY , πY ′}). σ-algebra produktowa jest generowana przez rzutowania.

Twierdzenie 11. Jeżeli f, g : X → R są mierzalne i α ∈ R, to f + g, f · g, αf , min (f, g), max (f, g)
są mierzalne.

Dowód. Mamy f+g = (+)◦(f, g). Złożenie (f, g) jest (A/B (R)⊗ B (R))-mierzalne, a dodawanie jest
ciągłe, więc

(
B
(
R2
)
/B (R)

)
-mierzalne. Wobec równości B

(
R2
)
= B (R)⊗B (R) mamy mierzalność

f + g. Pozostałych przypadków dowodzimy analogicznie.

Definicja 32. Rozszerzony zbiór liczb rzeczywistych to R = R ∪ {+∞,−∞}, gdzie +∞ i −∞ są
różne i nie należą do R. Rozszerzamy porządek w naturalny sposób.

W topologii wynikającej z porządku zbiory postaci [−∞, a) i (b,+∞] są otwarte. Bazą takiej topo-
logii jest {[−∞, a), (b,+∞], (a, b) : a, b ∈ R}. Mamy B

(
R
)
= σ ({[−∞, a) : a ∈ Q}).

Propozycja 15. B∗ ∈ B
(
R
)
⇐⇒ B∗ = B ∪ S, gdzie B ∈ B (R) i S ∈ P ({±∞}).

Dowód. Rozważmy D =
{
D ⊆ R : D = B ∪ S,B ∈ B (R) , S ∈ P ({±∞})

}
. Mamy B (R) ⊆ B

(
R
)
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oraz {−∞} =
⋂∞
n=1[−∞,−n) i {+∞} =

⋂∞
n=1(n,+∞], więc D ⊆ B

(
R
)
.

Mamy ∅ ∈ D,
⋃∞
i=1Bn ∪ Sn = (

⋃∞
i=1Bn) ∪ (

⋃∞
i=1 Sn) oraz (B ∪ S)c = (R \B) ∪ (P ({±∞}) \ S),

więc D jest σ-algebrą. Do tego D zawiera zbiory otwarte w R, więc mamy B
(
R
)
⊆ D.

Uwaga. Definiujemy operacje na R w sposób zgodny z intuicją. Nie definiujemy tylko sumy −∞+∞.
Zakładamy 0 · ±∞ = 0 oraz nie definiujemy 1

±∞ .

Notacja. Oznaczamy MK (X) =MK (X,A) = {f : X → K mierzalna}. Jeśli K = R, to pomijamy
ciało w oznaczeniu. Do tego dla u, v : X → R oznaczamy {u ≤ v} = {x ∈ X : u (x) ≤ v (x)} i
podobnie dla znaków <,=, ̸=.

Propozycja 16. Mamy φ ∈MC (X) ⇐⇒ Reφ, Imφ ∈MR (X).

Dowód. ( =⇒ ) Reφ i Imφ są rzutowaniami φ na odpowiednie współrzędne.

(⇐= ) Mamy φ = (+) ◦ (Reφ, i Imφ), co jest mierzalne.

Lemat 9. Jeżeli (fn)
∞
n=1 ⊆MR (X,A), to infn≥1 fn, supn≥1 fn, lim supn→∞ fn, lim infn→∞ fn oraz

limn→∞ fn (o ile istnieje dla każdego x ∈ X) są mierzalne.

Dowód. Mamy sup fn = − inf −fn oraz z definicji lim infn→∞ fn = supn≥1 infk≥n fk i analogicz-
nie lim supn→∞ fn = infn≥1 supk≥n fk. Zatem wystarczy pokazać, że dla każdego a ∈ R mamy
(infn≥1 fn)

−1
([−∞, a)) ∈ A. Równość (infn≥1 fn)

−1
([−∞, a)) =

⋃∞
n=1 f

−1
n ([−∞, a)) kończy.

Definicja 33. Funkcję f ∈ M (X) nazywamy schodkową (prostą), jeśli zbiór wartości f jest skoń-
czony, czyli mamy f (X) = {α1, . . . , αn} ⊆ R. Można wtedy przyjąć α1 < . . . < αn i zapisać
f (x) =

∑n
j=1 αjχ{f=αj} (x). Takie przedstawienie nazywamy postacią kanoniczną funkcji schodko-

wej.

Definicja 34. Przez E+ (X,A) = E+ oznaczamy zbiór takich funkcji schodkowych f : X → R, że
f (x) =

∑n
j=1 αjχAj (x) dla 0 ≤ α1 < α2 < . . . < αn i mierzalnych A1, . . . , An.

Dla f ∈ E+ i przy ustalonej mierze µ piszemy Iµ (f) =
∑n
j=1 αjµ (Aj).

Propozycja 17. Jeżeli {B1, . . . , Bm} ⊆ A jest takim podziałem X, że dla pewnej f ∈ E+ i pewnych
β1, . . . , βm ∈ R mamy f (x) =

∑m
j=1 βjχBj

(x), to Iµ (f) =
∑m
j=1 βjµ (Bj). Inaczej mówiąc, ta

wartość nie zależy od wyboru reprezentacji funkcji.

Dowód. Niech 0 ≤ α1 < α2 < . . . < αn będzie zbiorem wartości f ∈ E+ i niech Aj = {f = αj}.
Wówczas

Iµ (f) =

n∑
j=1

αjµ (Aj) =

n∑
i=1

∑
j:βj=αi

βjµ (Bj) =

m∑
j=1

βjµ (Bj) ,

bo z faktu, że {B1, . . . , Bm} jest podziałem wynika, że dla każdego Bj istnieje jedyne Ai takie, że
Bj ⊆ Ai.

Propozycja 18. Jeżeli f, g ∈ E+ i a, b ≥ 0, to Iµ (af + bg) = aIµ (f) + bIµ (g) oraz f ≤ g =⇒
Iµ (f) ≤ Iµ (g).

Dowód. Niech f =
∑n
i=1 αiχAi

oraz g =
∑m
j=1 βjχBj

. Niech

{C1, . . . , Cℓ} = {Ai ∩Bj : Ai ∩Bj ̸= ∅, 1 ≤ i ≤ n, 1 ≤ j ≤ m} .

Wtedy istnieją takie α′
1, . . . , α

′
ℓ i β′

1, . . . , β
′
ℓ, że f =

∑ℓ
k=1 α

′
kχCk

i g =
∑ℓ
k=1 β

′
kχCk

. Wtedy

Iµ (af + bg) =

ℓ∑
k=1

(aα′
k + bβ′

k)µ (Ck) = a

ℓ∑
k=1

α′
kµ (Ck) +

ℓ∑
k=1

β′
kµ (Ck) = aIµ (f) + bIµ (g) .
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Dla f ≤ g mamy Iµ (g) = Iµ (f) + Iµ (g − f) ≥ Iµ (f), bo Iµ (g − f) ≥ 0 wynika z g − f ≥ 0.

7. Całkowanie 2025-11-24

Definicja 35. Oznaczamy M+

R (X,A) =
{
g ∈MR : g ≥ 0

}
. Dla g ∈ M+

R definiujemy całkę funkcji
g jako ∫

g dµ = sup
E+∋h≤g

Iµ (h) ∈ [0,+∞] .

Dla A ∈ A oznaczamy
∫
A
g dµ =

∫
χAg dµ.

Uwaga. Jeśli g jest funkcją schodkową, to
∫
g dµ = Iµ (g).

Propozycja 19. Dla f, g ∈ M+

R mamy f ≤ g =⇒
∫
f dµ ≤

∫
g dµ oraz µ ({f > 0}) = 0 =⇒∫

f dµ = 0.

Dowód. Jeśli f ≤ g, to dla funkcji schodkowej h ≤ f mamy też h ≤ g, więc supremum w
∫
g dµ jest

brane po większym zbiorze i
∫
f dµ ≤

∫
g dµ.

Jeśli µ ({f > 0}) = 0, to dla funkcji schodkowej h takiej, że h ≤ f i h ∈ E+ mamy {h > 0} ⊆ {f > 0},
więc µ ({h > 0}) = 0 i Iµ (h) = 0. Z tego wynika, że

∫
f dµ = 0.

Twierdzenie 12 (O zbieżności monotonicznej). Niech (X,A, µ) będzie przestrzenią z miarą. Niech
(fn)

∞
n=1 ⊆MR będzie taki, że 0 ≤ f1 ≤ f2 ≤ . . . oraz fn (x)→ f (x) dla każdego x. Wówczas f jest

mierzalna oraz
∫
fn dµ↗

∫
f dµ.

Dowód. f jest mierzalna jako granica funkcji mierzalnych. Dla każdego fn mamy fn ≤ f , więc∫
f1 dµ ≤

∫
f2 dµ ≤ . . . ≤

∫
f dµ, czyli limn→∞

∫
fn dµ ≤

∫
f dµ. Z tego wynika też istnienie tej

granicy. Wykażemy teraz drugą nierówność.

Niech h =
∑m
j=1 αjχAj będzie takie, że h ≤ f . Ustalmy α ∈ (0, 1). Niech En = {αh ≤ fn} ∈ A.

Mamy
⋃∞
n=1En = X, bo dla x ∈ X jeśli h (x) = 0, to oczywiście x ∈ En dla każdego n, a

w przeciwnym wypadku αh (x) < f (x) i istnieje takie n, że αh (x) ≤ fn (x) ≤ f (x). Do tego
oczywiście En ⊆ En+1. Mamy αχEn

h ≤ fn, więc

α

m∑
j=1

µ (En ∩Aj)αj =
∫
αχEnhdµ ≤

∫
fn dµ .

Przechodząc n → ∞ dostajemy αIµ (h) ≤ limn→∞
∫
fn dµ, więc idąc α → 1 mamy Iµ (h) ≤

limn→∞
∫
fn dµ. Biorąc supremum po wszystkich h dostajemy

∫
f dµ ≤ limn→∞

∫
fn dµ.

Lemat 10. Jeżeli g ∈ M+

R , to istnieje ciąg (fn)
∞
n=1 ⊆ E+ taki, że fn ↗ g. Jeśli g jest ograniczona,

to zbieżność jest jednostajna.

Dowód. Ustalmy g i n ≥ 1. Niech An = {g ≥ n}. Dla każdego i ∈ {0, 1, . . . , n2n − 1} ustalamy
Bn,i = g−1 ([i2−n, (i+ 1) 2−n)) i definiujemy fn =

(∑n2n−1
i=0 i2−nχBn,i

)
+nχAn

. Widać, że fn ≤ g.
Jeśli g (x) ≤ m dla każdego x, to dla n ≥ m mamy 0 ≤ g (x) − fn (x) ≤ 2−n, z czego wynika
zbieżność jednostajna. Jeśli g nie jest ograniczona, to dla m = g (x) ̸= ∞ ten sam argument daje
nam zbieżność punktową, a dla g (x) =∞ mamy fn (x)→∞.

Twierdzenie 13 (O liniowości całki). Jeżeli f, g ∈M+

R i a, b ≥ 0, to∫
(af + bg) dµ = a

∫
f dµ+b

∫
g dµ .

Dowód. Niech (fn)
∞
n=1 i (gn)

∞
n=1 będą ciągami funkcji schodkowych punktowo zbieżnymi do f i g.
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Niech hn = afn + bgn ↗ af + bg. Mamy

a

∫
f dµ+b

∫
g dµ← aIµ (fn) + bIµ (gn) = Iµ (afn + bgn)→

∫
(af + bg) dµ .

Twierdzenie 14 (Całkowanie szeregu wyraz po wyrazie). Jeżeli (fn)
∞
n=1 ⊆M

+

R i szereg
∑∞
n=1 fn jest

punktowo zbieżny, to jest mierzalny i∫ ∞∑
n=1

fn dµ =

∞∑
n=1

∫
fn dµ .

Dowód. Zdefiniujmy gN =
∑N
n=1 fn. Mamy gN →

∑∞
n=1 fn, z czego wynika mierzalność tego

szeregu. Mamy gN ↗
∑∞
n=1 fn, więc

∞∑
n=1

∫
fn dµ←

N∑
n=1

∫
fn dµ =

∫
gN dµ→

∫ ∞∑
n=1

fn dµ .

Wniosek. Jeśli an,k ∈ R+ dla n, k ∈ N+, to

∞∑
n=1

∞∑
k=1

an,k =

∞∑
k=1

∞∑
n=1

an,k.

Dowód. Rozważamy σ-algebrę P (N+) nad N+ z miarą liczącą µ (A) = |A|. Definiujemy ciąg funkcji
(fn)

∞
n=1 zadany przez fn (k) = an,k. Funkcja gn,k = fnχ{1,...,k} jest prosta, mamy

∫
gn,k dµ ↗∫

fn dµ =
∑∞
j=1 fn (j). Zatem

∞∑
k=1

∞∑
n=1

an,k =

∫ ∞∑
n=1

fn dµ =

∞∑
n=1

∫
fn dµ =

∞∑
n=1

∞∑
k=1

an,k.

Definicja 36. Niech µ będzie miarą na (X,A), g ∈M+

R . Definiujemy miarę ν na A wzorem ν (A) =∫
A
g dµ. Funkcję g nazywamy gęstością ν względem µ. Piszemy ν = gµ lub dν = d (gµ), dν

dµ = g.

Propozycja 20. Niech g ∈M+

R i niech ν będzie miarą o gęstości g względem µ. Wtedy ν faktycznie
jest miarą na (X,A). Dla każdej f ∈ M+

R mamy
∫
f dν =

∫
fg dµ. Jeśli η = dν dla pewnego

d ∈M+

R , to η = (dg)µ.

Dowód. Niech (An)
∞
n=1 ⊆ A będą rozłącznymi zbiorami i niech A =

⊔∞
n=1An. Mamy χAg =∑∞

n=1 χAn
g, zatem

ν (A) =

∫
χAg dµ =

∞∑
n=1

∫
χAng dµ =

∞∑
n=1

ν (An) .

Dodatkowo ν (∅) = 0, więc ν jest miarą. Jeśli h ∈ E+ i h =
∑n
i=1 αiχAi , to∫

hdν =

n∑
i=1

αiν (Ai) =

n∑
i=1

αi

∫
χAig dµ =

∫ n∑
i=1

αiχAig dµ =

∫
hg dµ .

Niech f ∈M+

R i niech (sn)
∞
n=1 ⊆ E+ będzie ciągiem zbieżnym do f . Mamy∫
f dν = lim

n→∞

∫
sn dν = lim

n→∞

∫
sng dµ =

∫
fg dµ .
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Jeśli η = dν, to mamy

η (A) =

∫
χAddν =

∫
χAdg dµ,

zatem η = (dg)µ. To kończy dowód.

8. Własności zachodzące prawie wszędzie
2025-12-01

Definicja 37. Niech (X,A, µ) będzie przestrzenią z miarą. Mówimy, że własność W (x) zachodzi µ-
prawie wszędzie (µ-pw), jeśli istnieje A ∈ A takie, że µ (A) = 0 i {x ∈ X :W (x) nie zachodzi} ⊆ A.

Przykład. Dla Y ⊆ X mamy χY = 0 µ-pw jeśli µ (Y ) = 0.

Propozycja 21. Niech g, f ∈M+

R (X,A). Zachodzi

1. ∀a∈(0,+∞) µ ({f ≥ a}) ≤ 1
a

∫
f dµ (nierówność Markowa).

2.
∫
f dµ <∞ =⇒ f <∞ µ-pw.

3.
∫
f dµ = 0 ⇐⇒ f = 0 µ-pw.

4. f = g µ-pw implikuje
∫
f dµ =

∫
g dµ.

Dowód. 1. Ustalmy a > 0. Mamy f ≥ aχ{f≥a}, czyli
∫
f dµ ≥ aµ ({f ≥ a}).

2. Mamy {f =∞} =
⋂∞
n=1 {f ≥ n}. Z poprzedniego punktu µ ({f ≥ n}) ≤ 1

n

∫
f dµ → 0, więc

µ ({f =∞}) = limn→∞ µ ({f ≥ n}) = 0.

3. Jeśli
∫
f dµ = 0, to µ

({
f ≥ 1

n

})
≤ n

∫
f dµ = 0. Zatem z {f > 0} =

⋃∞
n=1

{
f ≥ 1

n

}
mamy

µ ({f > 0}) = 0. W drugą stronę już pokazaliśmy.

4. Mamy max (f, g)−min (f, g) = 0 µ-pw. Zatem∫
max (f, g) dµ =

∫
min (f, g) dµ+

∫
(max (f, g)−min (f, g)) dµ =

∫
min (f, g) dµ .

W połączeniu z
∫
min (f, g) dµ ≤

∫
f dµ,

∫
g dµ ≤

∫
max (f, g) dµ dostajemy

∫
f dµ =

∫
g dµ.

Lemat 11 (Fatou). Niech (fn)
∞
n=1 ⊆M

+

R (X,A). Zachodzi∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ .

Dowód. Mamy infk≥n fk (x) ↗ lim infn→∞ fn (x), więc
∫
infk≥n fk dµ ↗

∫
lim infn→∞ fn (x) dµ.

Do tego dla każdego p ≥ n mamy fp ≥ infk≥n fk, czyli
∫
fp dµ ≥

∫
infk≥n fk. Zatem

inf
p≥n

∫
fp dµ ≥

∫
inf
k≥n

fk dµ→
∫

lim inf
n→∞

fn dµ .

Przechodząc n→∞ w lewej stronie nierówności mamy tezę.

Definicja 38. Niech f ∈ MR (X,A). Dla f+ = max (f, 0) i f− = max (−f, 0) zachodzi f+, f− ∈
M+

R (X,A). Definiujemy całkę
∫
f dµ =

∫
f+ dµ−

∫
f− dµ zawsze, gdy to wyrażenie ma sens (czyli

nie otrzymujemy wyrażenia ∞−∞).

Mówimy, że f ∈ MR (X,A) jest całkowalna, jeśli
∫
f+ dµ,

∫
f− dµ < ∞. Wtedy

∫
f dµ istnieje i

jest skończone.

Definicja 39. Definiujemy zbiór funkcji całkowalnych jako

L1
R (X,A, µ) = L1

R (µ) =
{
f ∈MR : f jest całkowalna

}
.
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Dodatkowo definiujemy jego podzbiór funkcji skończonych L1 (µ) =
{
f ∈ L1

R (µ) : f (X) ⊆ R
}

.

Propozycja 22. Jeżeli f ∈ L1
R (µ) i f = g − h dla g, h ∈M+

R (A) ∩ L1
R (µ), to∫

f dµ =

∫
f+ dµ−

∫
f− dµ =

∫
g dµ−

∫
hdµ .

Dowód. Mamy f = f+ − f− = g − h, więc f+ + h = g + f−. Zatem
∫
f+ dµ+

∫
hdµ =∫

f− dµ+
∫
g dµ, czyli teza.

Definicja 40. Dla f ∈ MR (X,A) i A ∈ A definiujemy
∫
A
f dµ =

∫
χAf dµ. Mamy |χAf | ≤ |f |,

więc
∫
A
χAf dµ istnieje jeżeli f ∈ L1

R (µ).

Lemat 12. Niech f ∈MR. Następujące warunki są równoważne:

1. f ∈ L1
R (µ).

2. |f | ∈ L1
R (µ), czyli

∫
|f |dµ <∞.

3. Istnieje g ∈ L1
R (µ), g ≥ 0 takie, że |f | ≤ g.

Dowód. (1 =⇒ 2) Mamy |f | = f+ + f−, więc
∫
|f |dµ =

∫
f+ dµ+

∫
f− dµ <∞.

(2 =⇒ 3) g = |f | działa.

(3 =⇒ 1) Mamy f+, f− ≤ |f | ≤ g, więc
∫
f+ dµ,

∫
f− dµ <∞.

Propozycja 23. Zachodzi

1. f ∈ L1
R (µ) =⇒

∣∣∫ f dµ∣∣ ≤ ∫ |f |dµ.

2. L1 (µ) jest przestrzenią wektorową nad R i f →
∫
f dµ jest funkcjonałem liniowym.

3. Jeśli f ∈ L1
R (µ), g ∈MR (X,A) i f = g µ-pw, to g ∈ L1

R (µ) i
∫
g dµ =

∫
f dµ.

4. Jeśli f, g ∈ L1
R (µ) i f ≤ g µ-pw, to

∫
f dµ ≤

∫
g dµ.

Dowód. 1.
∣∣∫ f dµ∣∣ = ∣∣∫ f+ dµ−

∫
f− dµ

∣∣ ≤ ∫ f+ dµ+
∫
f− dµ =

∫
|f |dµ.

2. Jeśli f, g ∈ L1 (µ) i α, β ∈ R, to
∫
|αf + βg|dµ ≤ |α|

∫
|f |dµ+ |β|

∫
|g|dµ < ∞. Zatem

αf + βg ∈ L1 (µ). To, że całka jest liniowa, już wiemy.

3. Mamy {|f | ≠ |g|} ⊆ {f ̸= g}, więc |f | = |g| µ-pw i
∫
|g|dµ =

∫
|f |dµ < ∞ i g ∈ L1

R (µ). W
ten sam sposób f+ = g+ i f− = g− µ-pw, więc∫

g dµ =

∫
g+ dµ−

∫
g− dµ =

∫
f+ dµ−

∫
f− dµ =

∫
f dµ .

4. Niech h = max (f, g). Mamy h = g µ-pw, więc h ∈ L1
R (µ) i∫

g dµ =

∫
hdµ =

∫
f dµ+

∫
(h− f) dµ ≥

∫
f dµ .

Lemat 13. Jeżeli f ∈ L1
R (µ), to istnieje g ∈ L1 (µ) takie, że f = g µ-pw.

Dowód. Z całkowalności f mamy f ̸= ±∞ µ-pw, więc f = χ{|f |<∞}f µ-pw.

Lemat 14 (O uzupełnianiu dziedziny). Rozważmy ciąg funkcji (fn)
∞
n=1 ⊆ MR (X,A). Zbiór A ={

x ∈ X : ∃ limn→∞ fn (x) ∈ R
}

jest mierzalny. Co więcej, funkcja h : X → R zadana wzorem
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h (x) =

{
limn→∞ fn (x) , x ∈ A
0, wpp

jest mierzalna. Ta sama teza zachodzi, gdy dodatkowo żądamy,

by odpowiednia granica należała do R.

Dowód. Rozważmy funkcję G (x) = (lim infn→∞ fn (x) , lim supn→∞ fn (x)) ∈ R×R. Jest ona mie-
rzalna jako zestawienie funkcji mierzalnych. Przekątna ∆ =

{
(x, x) : x ∈ R

}
jest domknięta (z

własności T2), więc borelowska. Zachodzi A = G−1
(
∆
)
, bo istnienie granicy jest równoważne rów-

ności granicy dolnej i górnej. Zatem A ∈ A. Niech B ⊆ R będzie zbiorem borelowskim. Jeśli 0 /∈ B,
to h−1 (B) = A∩{x ∈ X : lim supn→∞ fn (x) ∈ B}, co jest mierzalne z mierzalności lim supn→∞ fn.
Jeśli 0 ∈ B, to h−1 (B) = X \h−1

(
R \B

)
i możemy zastosować poprzedni argument do dopełnienia.

To pokazuje, że h jest mierzalna.

Zauważmy, że dla A′ = {x ∈ X : ∃ limn→∞ fn (x) ∈ R} mamy A′ = G−1
(
∆ ∩ R2

)
, zatem A′ jest

mierzalny. Reszta argumentu przebiega bez zmian.

Twierdzenie 15 (Lebesgue; o zbieżności zmajoryzowanej). Jeżeli (fn)
∞
n=1 ⊆ L1 (µ) i istnieje taka

funkcja f ∈ MR (X,A), że dla µ-pw x ∈ X zachodzi limn→∞ fn (x) = f (x) oraz istnieje g ∈
M+

R (X,A) taka, że
∫
g dµ <∞ i |fn (x)| ≤ g (x) µ-pw dla każdego n, to f ∈ L1 (µ) oraz∫
f dµ = lim

n→∞

∫
fn dµ oraz lim

n→∞

∫
|f − fn|dµ = 0.

Dowód. Mamy |f − fn| ≤ 2g i |f − fn| → 0 µ-pw. Do tego
∫
|f |dµ ≤

∫
g dµ <∞, więc f ∈ L1 (µ).

Z lematu Fatou mamy∫
2g dµ =

∫
lim inf
n→∞

(2g − |f − fn|) dµ ≤ lim inf
n→∞

∫
(2g − |f − fn|) dµ =∫

2g dµ+ lim inf
n→∞

∫
− |f − fn|dµ =

∫
2g dµ− lim sup

n→∞

∫
|f − fn|dµ ≤

∫
2g dµ .

Zatem 0 ≤ lim infn→∞
∫
|f − fn|dµ ≤ lim supn→∞

∫
|f − fn|dµ ≤ 0, więc te wartości są równe i

mamy limn→∞
∫
|f − fn|dµ = 0. Ponadto

lim
n→∞

∣∣∣∣∫ f dµ−
∫
fn dµ

∣∣∣∣ ≤ lim
n→∞

∫
|f − fn|dµ = 0.

Uwaga. Korzystając z udowodnionego wcześniej lematu widzimy, jak uzyskać funkcję f . Zatem w
celu zastosowania twierdzenia Lebesgue’a wystarczy upewnić się, że odpowiednia zbieżność zachodzi
µ-pw.

9. Ciągłość i różniczkowalność całek
2026-01-06

Uwaga. Topologicznie C = R2, więc B (C) = B
(
R2
)
= B (R) ⊗ B (R). Zatem f : X → C jest

mierzalna dokładnie wtedy, gdy Re (f) i Im (f) są mierzalne.

Definicja 41. Piszemy MC (X,A) = {f : X → C | Re (f) , Im (f) ∈M (X,A)} oraz L1
C (X,A, µ) ={

f ∈MC (X,A) | |f | ∈ L1 (X,A, µ)
}
.

Elementy f ∈ L1
C (X,A, µ) nazywamy funkcjami całkowalnymi. Definiujemy dla nich

∫
f dµ =∫

Re (f) dµ+i
∫
Im (f) dµ ∈ C.

Lemat 15. f ∈ L1
C (µ) ⇐⇒ Re (f) , Im (f) ∈ L1 (µ).

Dowód. ( =⇒ ) Dla każdego z ∈ C jest |Re (z)| ≤ |z| i |Im (z)| ≤ |z|, więc |Re (f)| , |Im (f)| ≤ |f |.

(⇐= ) Mamy |f | =
(
Re (f)

2
+ Im (f)

2
) 1

2

, więc |f | ≤ |Re (f)|+ |Im (f)|.
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Propozycja 24. Niech f ∈ L1
C (µ). Zachodzi:

1. Re
(∫
f dµ

)
=
∫
Re (f) dµ.

2. Im
(∫
f dµ

)
=
∫
Im (f) dµ.

3.
∫
f dµ =

∫
f dµ.

4.
∣∣∫ f dµ∣∣ ≤ ∫ |f |dµ.

5. L1
C (µ) jest przestrzenią wektorową nad C a f →

∫
f dµ jest funkcjonałem liniowym.

6. dla g ∈MC(X,A) takiego, że f = g µ-pw zachodzi g ∈ L1
C (µ) i

∫
f dµ =

∫
g dµ.

Dowód. Dowodu wymaga tylko (4), reszta wynika wprost z odpowiednich własności całek funkcji
rzeczywistych. Mamy

∫
f dµ =

∣∣∫ f dµ∣∣ eiψ dla pewnego ψ ∈ [0, 2π), więc dla φ = 2π − ψ jest∣∣∣∣∫ f dµ

∣∣∣∣ = eiφ
∫
f dµ = Re

(
eiφ
∫
f dµ

)
=

∫
Re
(
eiφf

)
dµ ≤

∫ ∣∣eiφf ∣∣dµ =

∫
|f |dµ .

Uwaga. Wszystkie następne twierdzenia wypowiadamy dla R. Większość z nich można wypowiedzieć
też dla C, a dowody nie wymagają praktycznie żadnych zmian.

Twierdzenie 16 (O ciągłości całki względem parametru). Niech (X,A, µ) będzie przestrzenią z miarą,
(E,dE) przestrzenią metryczną, f : E ×X → R, ξ0 ∈ E. Zakładamy, że dla każdego ξ ∈ E funkcja
x → f (ξ, x) jest mierzalna, dla µ-pw x ∈ X funkcja ξ → f (ξ, x) jest ciągła w ξ0 oraz istnieje
g ∈ L1

+ (µ) takie, że dla każdego ξ ∈ E i µ-pw x ∈ X zachodzi |f (ξ, x)| ≤ g (x). W takiej sytuacji
funkcja F : E → R dana wzorem F (ξ) =

∫
f (ξ, x) dµ(x) jest dobrze określona dla każdego ξ ∈ E i

jest ciągła w ξ0.

Dowód. x → f (ξ, x) jest mierzalna, a z całkowalności g również całkowalna, więc definicja F (ξ)
jest poprawna. Niech (ξn)

∞
n=1 ⊆ E będzie ciągiem takim, że ξn → ξ0. Dla µ-pw x ∈ X zachodzi

f (ξn, x) → f (ξ0, x). Z twierdzenia o zbieżności zmajoryzowanej mamy zbieżność całek, a więc
F (ξn)→ F (ξ0), co daje poszukiwaną ciągłość.

Wniosek. Niech µ będzie taką miarą borelowską na (R,B (R)), że dla każdego x ∈ R zachodzi
µ ({x}) = 0. Dla każdego φ ∈ L1 (µ) funkcja R ∋ ξ →

∫
(−∞,ξ]

φdµ jest ciągła.

Dowód. Niech f : R2 ∋ (ξ, x) → χ(−∞,ξ] (x)φ (x). Funkcja ξ → f (ξ, x) jest ciągła w ξ0 ∈ R dla
wszystkich x ∈ R \ {ξ0}. Mamy µ ({ξ0}) = 0, więc ta funkcja jest ciągła dla µ-pw x. Do tego
|f (ξ, x)| ≤ |φ (x)|. Zatem ξ →

∫
χ(−∞,ξ]φdµ jest ciągła.

Definicja 42. Mówimy, że A ∈ A jest atomem miary µ na przestrzeni mierzalnej (X,A), jeśli
µ (A) > 0 i dla każdego B ⊊ A jeżeli B ∈ A, to µ (B) = 0.

Definicja 43. Miarę µ nazywamy bezatomową, jeśli µ nie ma atomów.

Definicja 44. Mając daną φ ∈ L1 (R,B (R) , λ) definiujemy φ̂ : R → C daną dla ξ ∈ R przez
φ̂ (ξ) =

∫
eiξxφ (x) dλ(x). Wówczas φ̂ jest ciągła. Nazywamy ją transformatą Fouriera φ.

Jeżeli µ jest miarą skończoną na (R,B (R)), to transformatą Fouriera µ nazywamy funkcję µ̂ (ξ) =∫
eiξx dµ(x). Jest to funkcja ciągła i ograniczona na R.

Definicja 45. Niech φ ∈ L1 (R,B (R) , λ). Niech h : R → R będzie funkcją ciągłą i ograniczoną.
Wówczas definiujemy splot tych funkcji jako h ∗ φ : R ∋ ξ →

∫
φ (x)h (ξ − x) dλ(x) ∈ R, co jest

poprawnie zdefiniowane, ciągłe i ograniczone.

Twierdzenie 17 (O różniczkowaniu pod znakiem całki). Niech (X,A, µ) będzie przestrzenią z miarą,
I ⊆ R przedziałem otwartym. Niech f : I × X → R, u0 ∈ I będą takie, że dla każdego u ∈ I
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funkcja x → f (u, x) jest całkowalna, dla µ-pw x ∈ X funkcja u → f (u, x) jest różniczkowalna w
u0 oraz istnieje g ∈ L1

+ (µ) taka, że dla każdego u ∈ I i µ-pw x ∈ X zachodzi |f (u, x)− f (u0, x)| ≤
g (x) |u− u0|. Wówczas funkcja F : I → R dana wzorem F (u) =

∫
f (u, x) dµ(x) jest różniczkowalna

w u0 i zachodzi F ′ (u0) =
∫
∂f
∂u (u0, x) dµ(x).

Dowód. Ustalmy ciąg (un)
∞
n=1 ⊆ I \ {u0} taki, że un → u0. Niech B ∈ A będzie takie, że µ (B) = 0

i dla x ∈ X \ B istnieje ∂f
∂u (u0, x) = limn→∞

f(un,x)−f(u0,x)
un−u0

. Oznaczmy ten iloraz różnicowy przez
φn (x). Z lematu o uzupełnianiu dziedziny możemy przyjąć, że ∂f

∂u (u0, ·) istnieje dla każdego x ∈ X
(i wynosi 0, gdy granica nie istnieje). Mamy |φn (x)| ≤ g (x). Zatem korzystając z twierdzenia
Lebesgue’a o zbieżności zmajoryzowanej dostajemy

F ′ (u0)←
F (un)− F (u0)

un − u0
=

∫
f (un, x)− f (u0, x)

un − u0
dµ(x)→

∫
∂f

∂u
(u0, x) dµ(x) .

Wniosek. Niech (X,A, µ) będzie przestrzenią z miarą, I ⊆ R przedziałem a f : I ×X → R funkcją
taką, że dla każdego u ∈ I funkcja x→ f (u, x) jest całkowalna, dla µ-pw x ∈ X funkcja u→ f (u, x)
jest różniczkowalna na I oraz istnieje g ∈ L1

+ (µ) taka, że dla każdego u ∈ I i µ-pw x ∈ X

zachodzi
∣∣∣∂f∂u (u, x)

∣∣∣ ≤ g (x). Wówczas funkcja F : I ∋ u →
∫
f (u, x) dµ(x) jest dobrze określona i

różniczkowalna na I oraz zachodzi F ′ (u) =
∫
∂f
∂u (u, x) dµ(x).

Dowód. Z twierdzenia o wartości średniej |f (u, x)− f (u0, x)| =
∣∣∣∂f∂u (ξ, x)

∣∣∣ |u− u0| ≤ g (x) |u− u0|.
Zatem spełnione są wszystkie założenia twierdzenia o różniczkowaniu pod znakiem całki i mamy
tezę.

Propozycja 25. 1. Jeżeli φ ∈ L1 (R,B (R) , λ) spełnia
∫
|xφ (x)|dλ(x) < ∞, to transformata

Fouriera φ̂ jest różniczkowalna i φ̂′ (u) = i
∫
xeiuxφ (x) dλ(x).

2. Jeżeli φ ∈ L1 (R,B (R) , λ), h : R → R jest klasy C1 oraz h, h′ są ograniczone, to splot h ∗ φ
jest różniczkowalny oraz (h ∗ φ)′ = h′ ∗ φ.

3. Jeżeli φ ∈ L1 (R,B (R) , λ), h : R→ R jest klasy C∞ oraz h(k) jest ograniczone dla każdego k,
to splot h ∗ φ jest klasy C∞.

Dowód. 1. Skończoność ten całki oznacza całkowalność, więc istnieje całkowalne g (x) takie, że
g (x) ≥ 0 i |xφ (x)| ≤ g (x). Z tego mamy odpowiednie ograniczenie dla φ̂, a więc φ̂ jest
różniczkowalna i zachodzi odpowiedni wzór.

2. Ograniczoność h i h′ daje nam istnienie odpowiednich ograniczeń na funkcję pod całką z
splocie, teza wynika z poprzedniego wniosku.

3. Wynika z wielokrotnej iteracji poprzedniego argumentu.

10. Normy całkowe
2026-01-09

Definicja 46. Mówimy, że p, q ∈ [1,∞] są wykładnikami sprzężonymi, jeśli 1
p +

1
q = 1. Przyjmujemy

tu, że 1
∞ = 0, więc p =∞, q = 1 są sprzężone.

Definicja 47. Niech (X,A, µ) będzie przestrzenią z miarą a p ≥ 1 liczbą rzeczywistą. Definiujemy
zbiór funkcji, które są całkowalne w p-tej potędze jako

Lp (X,A, µ) = Lp (µ) =
{
f ∈M (X,A) :

∫
|f |p dµ <∞

}
.
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Definicja 48. Mówimy, że funkcja mierzalna f : X → R jest ograniczona µ-pw jeżeli istnieje takie
C ∈ R, że |f (x)| ≤ C dla µ-pw x ∈ X.

Oznaczamy L∞ (X,A, µ) = L∞ (µ) = {f ∈M (X,A) : f ograniczona µ-pw}.

Definicja 49. Dla f ∈ M (X,A) oraz p ≥ 1 definiujemy ∥f∥p =
(∫
|f |p dµ

) 1
p przy konwencji

∞
1
p =∞. Do tego definiujemy ∥f∥∞ = inf {C ∈ [0,∞] : ∀µ-pw x∈X |f (x)| ≤ C}. Tę funkcję czasem

nazywa się supremum istotnym (essential supremum).

Uwaga. Dla p ∈ [1,∞] zachodzi f ∈ Lp (µ) ⇐⇒ ∥f∥p <∞.

Definicja 50. Dla f, g ∈M (X,A) definiujemy relację równoważności f ∼ g ⇐⇒ f = g µ-pw.

Uwaga. Z własności całki wynika fakt, że jeśli f ∼ g, to ∥f∥p = ∥g∥p dla p ∈ [1,∞].

Definicja 51. Dla p ∈ [1,∞] definiujemy przestrzeń ilorazową

Lp (X,A, µ) = Lp (µ) = L
p (X,A, µ)⧸∼.

Uwaga. Elementami Lp są klasy równoważności funkcji, jednak często mówi się o „funkcjach w Lp”,
bowiem wiele rozumowań nie zależy od wyboru reprezentanta klasy.

Uwaga. Analogicznie definiujemy odpowiednie przestrzenie funkcji zespolonych LpC (µ) i LpC (µ).

Lemat 16 (Nierówność Younga). Niech 1 < p, q <∞ będą wykładnikami sprzężonymi. Wówczas dla
wszystkich u, v ≥ 0 zachodzi uv ≤ up

p + vq

q . Równość zachodzi dokładnie wtedy, gdy v = up−1.

Twierdzenie 18 (Nierówność Höldera). Jeżeli p, q ∈ [1,∞] są wykładnikami sprzężonymi, f, g ∈
M (X,A), to

∫
|fg|dµ ≤ ∥f∥p ∥g∥q. W szczególności jeżeli f ∈ Lp (µ), g ∈ Lq (µ), to fg ∈ L1 (µ).

Dla p, q < ∞ równość zachodzi dokładnie wtedy, gdy |f |p i |g|q są liniowo zależne w L1 (µ), to
znaczy istnieją takie α, β ∈ R, że co najmniej jedno z nich jest niezerowe i α |f |p + β |g|q = 0 µ-pw.

Dowód. Jeśli ∥f∥p = 0 lub ∥g∥q = 0, to |fg| = 0 µ-pw, bo zerowość całki implikuje zerowość
funkcji. Zatem można założyć ∥f∥p , ∥g∥q ̸= 0. Jeśli p = 1, q = ∞, to |fg| ≤ ∥g∥∞ |f | µ-pw, więc∫
|fg|dµ ≤ ∥g∥∞

∫
|f |dµ = ∥g∥∞ ∥f∥1. Dalej zakładamy p, q ̸=∞.

Z nierówności Younga dla u = |f(x)|
∥f∥p

, v = |g(x)|
∥g∥q

dostajemy |f(x)g(x)|
∥f∥p∥g∥q

≤ 1
p
|f(x)|p
∥f∥p

p
+ 1

q
|g(x)|q
∥g∥q

q
. Całkując

obustronnie mamy 1
∥f∥p∥g∥q

∫
|fg|dµ ≤ 1

p +
1
q = 1.

Równość zachodzi, gdy w nierówności Younga równość zachodzi µ-pw. Zatem musimy mieć |g(x)|
∥g∥q

=(
|f(x)|
∥f∥p

)p−1

, co po podniesieniu do potęgi q = p
p−1 daje |g (x)|q = ∥g∥q

q

∥f∥p
p
|f (x)|p.

Wniosek (Nierówność Cauchy’ego-Schwarza). Jeśli f, g ∈M (X,A), to∫
|fg|dµ ≤

(∫
|f |2 dµ

) 1
2
(∫
|g|2 dµ

) 1
2

.

Wniosek. Jeżeli µ (X) < ∞ oraz p, q to wykładniki sprzężone i p > 1, to dla każdej funkcji f ∈
M (X,A) zachodzi ∥f∥1 ≤ µ (X)

1
q ∥f∥p. Zatem Lp (µ) ⊆ L1 (µ) i Lp (µ) ⊆ L1 (µ) dla p ∈ (1,∞].

Dowód. Wystarczy zastosować nierówność Höldera dla g (x) = 1.
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Wniosek. Jeżeli µ (X) <∞ i 1 ≤ r < r′ <∞, to dla f ∈M (X,A) jest ∥f∥r ≤ µ (X)
1
r−

1
r′ ∥f∥r′ .

Dowód. Wystarczy zastosować poprzedni wniosek do p = r′

r i funkcji |f |r, mamy∫
|f |r dµ ≤ µ (X)

1− r
r′

(∫
|f |r

′
) r

r′

,

co po obustronnym wzięciu pierwiastka r-tego stopnia daje tezę.

Wniosek. Jeżeli µ (X) <∞ i 1 ≤ p < q ≤ ∞, to Lq (µ) ⊆ Lp (µ) i Lq (µ) ⊆ Lp (µ).
Dowód. Przypadek q < ∞ natychmiast wynika z poprzedniego, a q = ∞ wynika z tego, że przy
ograniczonym f (x) odpowiednie całki są skończone.

Wniosek. Jeżeli µ (X) = 1, to dla 1 ≤ p < q ≤ ∞ mamy ∥f∥p ≤ ∥f∥q.

Propozycja 26 (Nierówność Jensena). Jeżeli µ (X) = 1 oraz φ : [0,∞)→ [0,∞) jest funkcją wypukłą,
to dla każdej funkcji f ∈ M (X,A) takiej, że f ≥ 0 zachodzi φ̃

(∫
f dµ

)
≤
∫
φ̃ ◦ f dµ, gdzie

φ̃ : [0,∞] → [0,∞] jest rozszerzeniem φ przez φ̃ (∞) = ∞. W szczególności jeśli φ̃ ◦ f ∈ L1 (µ), to
f ∈ L1 (µ).

Z kolej jeśli ψ : [0,∞)→ [0,∞) jest funkcją wklęsłą a f jest dodatkowo całkowalna, to
∫
ψ ◦ f dµ ≤

ψ
(∫
f dµ

)
. W szczególności ψ ◦ f ∈ L1 (µ).

Dowód. Na początku wypowiedzmy kilka faktów o funkcjach wypukłych. Są one ciągłe we wnętrzu
swojej dziedziny. Jeśli dla Φ : [a, b]→ R wypukłej oznaczymy zbiór prostych leżących pod wykresem
funkcji jako EΦ =

{
ℓ : y → cy + d ∈ R | ∀y∈(a,b) ℓ (y) ≤ Φ (y)

}
, to zachodzi Φ (x) = supℓ∈EΦ

ℓ (x).

Zauważmy, że φ̃ jest wypukła. Mamy φ̃◦f (x) = χ{f=0} (x) φ̃ (0)+χ{0<f<∞}φ (f (x))+χ{f=∞} (x) ·
∞, więc z ciągłości φ|(0,∞) mamy mierzalność tej funkcji. Jeżeli

∫
φ̃ ◦ f dµ = ∞, to teza zachodzi.

Dalej zakładamy skończoność tej całki. Dla ℓ ∈ Eφ̃ mamy ℓ
(∫
f dµ

)
= c

∫
f dµ+b =

∫
ℓ ◦ f dµ ≤∫

φ̃ ◦ f dµ <∞. Biorąc supremum po ℓ ∈ Eφ̃ dostajemy φ̃
(∫
f dµ

)
≤
∫
φ̃ ◦ f dµ.

−ψ jest wypukła, więc ψ ◦ f jest mierzalna (nie musimy dodefiniowywać ψ w nieskończoności, bo
f jest µ-pw skończona). Dla ℓ (y) = cy + d ≥ ψ (y) mamy

∫
ψ ◦ f dµ ≤

∫
ℓ ◦ f dµ = a

∫
f dµ+b =

ℓ
(∫
f dµ

)
. Biorąc infimum po wszystkich takich ℓ dostajemy tezę.

Twierdzenie 19 (Nierówność Minkowskiego). Jeżeli f, g ∈ Lp (µ) i p ∈ [1,∞], to f + g ∈ Lp (µ) i
∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Dowód. Dla p = ∞ teza wynika z nierówności trójkąta. Ustalmy p ∈ [1,∞). Mamy |f + g|p ≤
(|f |+ |g|)p ≤ 2pmax {|f |p , |g|p} ≤ 2p (|f |p + |g|p), gdzie druga nierówność wynika z rozpisania
wzoru Newtona. Całkując stronami dostajemy |f + g|p ∈ L1 (µ), czyli f + g ∈ Lp (µ).

Dla p = 1 nierówność wynika z nierówności trójkąta. Zatem można założyć p > 1. Niech q = p
p−1 <

∞. Mamy∫
|f + g|p dµ =

∫
|f + g| |f + g|p−1

dµ ≤
∫
|f | |f + g|p−1

dµ+

∫
|g| |f + g|p−1

dµ ≤

∥f∥p
∥∥∥(f + g)

p−1
∥∥∥
q
+ ∥g∥p

∥∥∥(f + g)
p−1
∥∥∥
q
=
(
∥f∥p + ∥g∥p

)(∫
|f + g|q(p−1)

dµ

) 1
q

=

(
∥f∥p + ∥g∥p

)(∫
|f + g|p dµ

) p−1
p

.

Wartość A =
(∫
|f + g|p dµ

) p−1
p jest skończona, bo f + g ∈ Lp (µ). Jeśli A = 0, to teza zachodzi. W

przeciwnym wypadku wydzielamy obustronnie przez A, co daje tezę.

Twierdzenie 20. Lp jest przestrzenią unormowaną dla dowolnego p ∈ [1,∞]. Dodatkowo L2 jest
przestrzenią z iloczynem skalarnym ⟨f, g⟩ =

∫
fg dµ (⟨f, g⟩ =

∫
fg dµ w C).
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Dowód. Nierówność Minkowskiego daje nierówność trójkąta, a pozostałe warunki są oczywiste.∫
fg dµ spełnia własności iloczynu skalarnego, odpowiadająca mu norma to właśnie ∥·∥2.

Lemat 17. Jeżeli (fn)
∞
n=1 ⊆ Lp (µ) dla p ∈ [1,∞) i fn ≥ 0 dla każdego n, to ∥

∑∞
n=1 fn∥p ≤∑∞

n=1 ∥fn∥p.

Dowód. Ustalmy N ≥ 0. Z nierówności Minkowskiego mamy∥∥∥∥∥
N∑
n=1

fn

∥∥∥∥∥
p

≤
N∑
n=1

∥fn∥p ≤
∞∑
n=1

∥fn∥p .

Do tego supN

∥∥∥∑N
n=1 fn

∥∥∥
p

= supN
∫ (∑N

n=1 fn

)p
dµ =

∫ (
supN

∑N
n=1 fn

)p
dµ, gdzie ostatnie

przejście wynika z tego, że sumujemy dodatnie wartości. To kończy dowód, bo supN
∑N
n=1 fn =∑∞

n=1 fn.

Lemat 18. Niech (fn)
∞
n=1 ⊆ Lp (µ) dla p ∈ [1,∞) będzie ciągiem Cauchy’ego względem ∥·∥p. Wów-

czas istnieją takie f ∈ Lp (µ) oraz n (1) < n (2) < . . ., że limk→∞ fn(k) (x) = f (x) dla µ-pw x. Co
więcej f = limk→∞ fn(k) w Lp (µ).

Dowód. Z definicji ciągu Cauchy’ego znajdujemy taki ciąg n (1) < n (2) < . . ., że dla k ≥ 1 za-
chodzi

∥∥fn(k+1) − fn(k)
∥∥
p
≤ 2−k. Niech n (0) = 0 i f0 = 0. Mamy fn(k+1) =

∑k
j=0 fn(j+1) − fn(j).

Pokażemy, że szukaną funkcją jest f =
∑∞
j=0 fn(j+1) − fn(j). Mamy

∥∥∥∑∞
j=0 fn(j+1) − fn(j)

∥∥∥
p
≤∑∞

j=0

∥∥fn(j+1) − fn(j)
∥∥
p
≤
∥∥fn(1)∥∥+∑∞

j=1
1
2j < ∞. Zatem f ∈ Lp (µ) i f (x) = limn→∞ fn (x) dla

µ-pw x. Do tego
∥∥f − fn(k)∥∥p ≤∑∞

j=k

∥∥fn(j+1) − fn(j)
∥∥
p
≤
∑∞
j=k

1
2j → 0.

Wniosek (Twierdzenie Riesza-Fischera). Lp (µ) i Lp (µ) są przestrzeniami zupełnymi dla p ∈ [1,∞].

Dowód. Przypadek p < ∞ rozważyliśmy w poprzednim lemacie. Dla ciągu Cauchy’ego (fn)
∞
n=1 ⊆

L∞ (µ) niech Ak = {x ∈ X : |fk (x)| > ∥fk∥∞} i Bm,n = {x ∈ X : |fm (x)− fn (x)| > ∥fm − fn∥∞}.
Są to zbiory miary zero. Zbiór E =

⋃∞
k=1Ak ∪

⋃∞
m,n=1Bm,n również jest miary zero. Na X \ E

zachodzi nierówność |fn (x)− fm (x)| ≤ ∥fn − fm∥∞, więc rozważany ciąg jest jednostajnie zbieżny.
Niech f będzie granicą tego ciągu na X \ E, a na E niech równa się 0. Dla odpowiednio dużego
N mamy ∥fn∥∞ ≤ ∥fN∥∞ + 1 dla n ≥ N . Zatem |f (x)| ≤ ∥fN∥∞ + 1 dla µ-pw x. Podobnie
|fn (x)− f (x)| ≤ ε dla µ-pw x i odpowiednio dużego n. Zatem ∥fn − f∥∞ → 0.

Wniosek. Jeżeli (fn)
∞
n=1 i g są elementami Lp (µ) dla p ∈ [1,∞) oraz dla każdego n mamy |fn| ≤ g

µ-pw, to jeśli f (x) = limn→∞ fn (x) dla µ-pw x, to f ∈ Lp (µ) oraz limn→∞ ∥fn − f∥p = 0.

Twierdzenie 21 (Riesz). Ustalmy p ∈ [1,∞). Niech f, (fn)
∞
n=1 ⊆ Lp (µ) będą takie, że f (x) =

limn→∞ fn (x) dla µ-pw x. Wtedy limn→∞ ∥fn − f∥p = 0 wtedy i tylko wtedy, gdy limn→∞ ∥fn∥p =
∥f∥p.

Dowód. ( =⇒ ) Wystarczy zastosować odwrotną nierówność trójkąta
∣∣∣∥fn∥p − ∥f∥p∣∣∣ ≤ ∥fn − f∥p.

(⇐= ) Mamy |fn − f |p ≤ 2p (|fn|p + |f |p). Zatem 2p (|fn|p + |f |p)− |fn − f |p ≥ 0 i można zastoso-
wać lemat Fatou∫

2p+1 |f |p dµ =

∫
lim inf
n→∞

(2p (|f |p + |fn|p)− |fn − f |p) dµ ≤∫
2p |f |p dµ+ lim inf

n→∞

∫
2p |fn|p dµ− lim sup

n→∞

∫
|fn − f |p dµ ≤

∫
2p+1 |f |p dµ,

gdzie ostatnie przejście korzysta ze zbieżności normy. Nierówność okazała się być równością, więc
mamy lim supn→∞

∫
|fn − f |p dµ = 0, co daje tezę.
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11. Miary regularne
2026-01-19

Definicja 52. σ-algebrą zbiorów Baire’a nazywamy σ-algebrę

Ba (X) = σ
({
f−1 (U) : U ⊆ R otwarty, f : X → R ciągła

})
,

która jest najmniejszą σ-algebrą względem której wszystkie rzeczywiste funkcje ciągłe na X są
mierzalne.

Definicja 53. Mówimy, że miara µ na (X,A) jest

• zewnętrznie regularna, jeżeli dla A ∈ A jest µ (A) = inf {µ (U) : A ⊆ U,U otwarte, U ∈ A}.

• regularna, jeżeli dla A ∈ A jest µ (A) = sup {µ (K) : K ⊆ A,K zwarty,K ∈ A}.

• regularna względem zbiorów domkniętych, jeżeli dla A ∈ A jest
µ (A) = sup {µ (D) : D ⊆ A,D domknięte, D ∈ A}.

Miarę skończoną na (X,A) nazywamy ciasną (tight), jeżeli X spełnia warunek z definicji miary
regularnej.

Lemat 19. Niech X będzie przestrzenią metryczną, a µ skończoną miarą borelowską na X. Niech R
będzie rodziną zbiorów, które spełniają warunek z definicji miary zewnętrznie regularnej i regularnej
względem zbiorów domkniętych. R jest σ-algebrą.

Twierdzenie 22. Jeżeli X jest przestrzenią metryczną, to każda skończona miara borelowska na X
jest regularna względem zbiorów domkniętych i zewnętrznie regularna.

Dowód. Wystarczy pokazać, że zbiory otwarte spełniają odpowiednie warunki, bo rodzina zbio-
rów spełniających rozważane warunki jest σ-algebrą. Dla U ⊆ X otwartego spełniony jest waru-
nek zewnętrznej regularności, bo miara jest monotoniczna. Rozważmy zbiory domknięte postaci
Fn =

{
x ∈ X : dist (x,X \ U) ≥ 1

n

}
. Mamy Fn ⊆ U oraz Fn ⊆ Fn+1 i

⋃∞
n=1 Fn = U . Zatem

limn→∞ µ (Fn) = µ (U), co świadczy o µ (U) ≤ sup {µ (F ) : F ⊆ U,F domknięty}. Druga nierów-
ność wynika z monotoniczności miary.

Twierdzenie 23. Każda ciasna, skończona miara borelowska na przestrzeni metrycznej jest regu-
larna.
Dowód. Niech K będzie takim zbiorem zwartym, że µ (X \K) ≤ ε. Dla dowolnego F mamy
µ (F ) = µ (F ∩K) + µ (F \K) ≤ µ (F ∩K) + ε. Dla zbioru borelowskiego A mamy µ (A) =
sup {µ (F ) : F ⊆ A,F domknięty} ≤ ε+sup {µ (F ∩K) : F ⊆ A,F domknięty}. Zbiory postaci F ∩
K są zwarte, zatem przechodząc ε → 0 dostajemy µ (A) ≤ sup {µ (D) : D ⊆ A,D zwarty}. Druga
nierówność wynika z monotoniczności miary.

Definicja 54. Przestrzenią polską nazywamy ośrodkową przestrzeń topologiczną, która jest metry-
zowalna w sposób zupełny.

Twierdzenie 24 (Ulam). Każda skończona miara borelowska na przestrzeni polskiej jest ciasna, więc
regularna.

Dowód. Niech (xn)
∞
n=1 ⊆ X będzie ośrodkiem. Ustalmy ε > 0 i m ≥ 1. Istnieje n takie, że dla

Km =
⋃n
j=1B

(
xj ,

1
m

)
mamy µ (X \Km) < ε

2m . Niech K =
⋂∞
i=1Ki. Ten zbiór jest zwarty, bo

jest domknięty i całkowicie ograniczony (dla każdego δ > 0 można go pokryć skończoną liczbą
kul o promieniu δ), co w przestrzeniach zupełnych implikuje zwartość. Do tego µ (X \K) ≤∑∞
i=1 µ (X \Ki) ≤ ε.

Definicja 55. Miara borelowska µ na X jest miarą Radona, jeżeli dla każdego zwartego K ⊆ X
zachodzi µ (K) <∞.

Definicja 56. Przez Cc (X) oznaczamy zbiór ciągłych funkcji f : X → R o zwartym nośniku.
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Propozycja 27. Miara Radona na lokalnie zwartej przestrzeni metrycznej jest regularna.

Lemat 20. Jeżeli µ jest miarą Radona na lokalnie zwartej przestrzeni metrycznej X, to J : Cc (X)→
R zadane przez J (f) =

∫
f dµ jest dodatnim funkcjonałem liniowym na Cc (X).

Twierdzenie 25 (Riesz, Markow, Kakutani). Niech X będzie ośrodkową, lokalnie zwartą przestrzenią
metryczną. Jeżeli J jest dodatnim funkcjonałem liniowym na Cc (X), to istnieje dokładnie jedna
taka miara Radona µ na (X,B (X)), że J (f) =

∫
f dµ. Ponadto dla otwartego U ⊆ X zachodzi

µ (U) = sup {J (f) : f ∈ Cc (X) , 0 ≤ f ≤ χU}.

Twierdzenie 26. Jeżeli (X,A, µ) jest przestrzenią z miarą, p ∈ [1,∞), to zbiór klas równoważności
funkcji prostych należących do L1 (µ) jest gęsty w

(
Lp (µ) , ∥·∥p

)
.

Jeżeli X jest przestrzenią metryzowalną a µ zewnętrznie regularną miarą borelowską na X, to
ograniczone funkcje lipschitzowsko ciągłe w Lp (µ) są gęste w Lp (µ).

Jeżeli X jest metryzowalną, ośrodkową, lokalnie zwartą przestrzenią a µ miarą Radona, to funkcje
lipschitzowskie w Cc (X) są gęste w Lp (µ).

Wniosek. Cc
(
Rd
)

jest gęsty w Lp (λ) dla p ∈ [1,∞).

Dowód. λ jest miarą Radona.

12. Absolutna ciągłość
2026-01-21

Definicja 57. Niech µ, ν będą miarami na (X,A). Mówimy, że ν jest absolutnie ciągła względem µ
(oznaczenie ν ≪ µ), jeśli µ (A) = 0 dla A ∈ A implikuje ν (A) = 0.

ν jest singularna (ortogonalna) względem µ (co oznaczamy ν ⊥ µ), jeśli istnieje N ∈ A takie, że
µ (N) = 0 = ν (X \N).

Przykład. Dla różnych a, b ∈ X mamy δa ⊥ δb (miara Diraca).

Dla f ∈M+ (X,A) i ν (A) =
∫
A
f dµ mamy ν ≪ µ.

Twierdzenie 27 (Lebesgue, Radon, Nikodym). 1. Jeżeli ν, µ są σ-skończone, to istnieje dokładnie
jedna para (νa, νs) miar na (X,A) takich, że ν = νa + νs i νa ≪ µ, νs ⊥ µ.

2. Jeżeli ν, µ są σ-skończone, to istnieje taka funkcja mierzalna g : X → [0,∞), że νa (A) =∫
A
g dµ dla każdego A ∈ A. Do tego g jest wyznaczone jednoznacznie w L1 (µ).

Dowód. Zakładamy skończoność miar. Najpierw rozważymy przypadek ν ≤ µ. Wtedy dla g ∈
M+ (X,A) mamy

∫
g dν ≤

∫
g dµ. Zatem L2 (µ) ⊆ L1 (µ) ⊆ L1 (ν) i ma sens odwzorowanie

Φ : L2 (µ) ∋ f →
∫
f dν ∈ R. Oznaczmy przez Φ̃ odwzorowanie indukowane na L2 (µ). Stosu-

jąc nierówność Cauchy’ego-Schwarza mamy

|Φ (f)| ≤
∫
|f · 1|dν ≤

(∫
|f |2 dν

) 1
2

ν (X)
1
2 ≤ ∥f∥L2(µ) ν (X)

1
2 .

Zatem Φ̃ jest ciągłym funkcjonałem liniowym na L2 (µ), które jest przestrzenią Hilberta, więc z
twierdzenia Riesza istnieje g ∈ L2 (µ) takie, że Φ̃ (f) =

∫
fg dµ. W szczególności ν (A) =

∫
χA dν =

Φ̃ (χA) =
∫
A
g dµ.

Dla ustalonego ε > 0 mamy ciąg nierówności µ ({g ≥ 1 + ε}) ≥ ν ({g ≥ 1 + ε}) =
∫
{g≥1+ε} g dµ ≥

(1 + ε)µ ({g ≥ 1 + ε}). Wynika z niego, że µ ({g ≥ 1 + ε}) = 0, bo ν jest skończona. Mamy zatem
µ ({g > 1}) = µ

(⋃
n≥1

{
g ≥ 1 + 1

n

})
= 0, czyli 0 ≤ g ≤ 1 µ-pw.

Teraz rozważamy dowolne skończone µ, ν. Niech η = µ+ ν. Wtedy ν ≤ η. Mamy więc funkcję mie-
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rzalną h : X → [0, 1] taką, że
∫
f dν =

∫
fhdη dla każdego f ∈ L2 (µ). Mamy

∫
f dν =

∫
fhdη =∫

fhdν+
∫
fg dµ, gdzie ostatnie przejście zachodzi dla funkcji prostych, więc z twierdzenia o zbież-

ności monotonicznej również dla mierzalnych. Zachodzi więc równość
∫
f (1− h) dν =

∫
fhdµ.

Niech N = {h = 1}. Dla f = χN mamy 0 =
∫
N
(1− h) dν =

∫
N
hdµ = µ (N). Zatem miara

vs = χNν spełnia νs (X \N) = 0 = µ (N) i mamy νs ⊥ µ.

Niech f̃ = χX\N (1− h)−1
f dla f ∈ M+ (X,A). Mamy równość

∫
X\N f dν =

∫
f̃ (1− h) dν =∫

X\N f
h
h−1 dµ. Dla f = χA zachodzi więc ν (A ∩ (X \N)) =

∫
A
χX\N

h
h−1 dµ. Możemy położyć

νa = χX\N
h
h−1 · µ, co da nam ν = νa + νs i νa ≪ µ.

Dla miar σ-skończonych mamy ciąg X =
⋃∞
n=1En taki, że µ (En) , ν (En) < ∞. Możemy założyć

En ⊆ En+1. Stosujemy przypadek skończony na νn = ν|En
i µn = µ|En

i definiujemy νa (A) =∑∞
n=1 νn,a (A ∩ (En \ En−1)), analogicznie νs.

Pozostało pokazać jedyność. Niech (νa, νs) i (ν′a, ν′s) spełniają pierwszy punkt. Wtedy ρ = νa−ν′a =
ν′s−νs spełnia ρ≪ µ (jako va−v′a) oraz ρ ⊥ µ, bo jeśli νs (N) = ν′s (N

′) = µ (X \N) = µ (X \N ′) =
0, to ρ (N ∩N ′) = 0 = µ (X \ (N ∩N ′)). Z tego wynika ρ = 0.

Niech g, g̃ będą takie, że νa =
∫
g dµ =

∫
g̃ dµ. Wtedy

∫
{g̃>g} g̃ dµ = νa ({g̃ > g}) =

∫
{g̃>g} g dµ, z

czego wynika µ ({g̃ > g}) = 0. Analogicznie µ ({g > g̃}) = 0. Zatem g̃ = g µ-pw.

Definicja 58. Jeżeli ν ≪ µ, to νa = ν i νs = 0. Wtedy funkcję g otrzymaną z twierdzenia Radona-
Nikodyma nazywamy pochodną Radona-Nikodyma ν względem µ i piszemy g = dν

dµ .

Twierdzenie 28. Jeżeli µ jest σ-skończona a ν skończona, to ν ≪ µ wtedy i tylko wtedy, gdy dla
każdego ε > 0 istnieje δ > 0 takie, że dla każdego A ∈ A zachodzi µ (A) < δ =⇒ ν (A) < ε.

Dowód. ( =⇒ ) Wiemy, że istnieje g takie, że ν (A) =
∫
A
g dµ. Wiemy, że

∫
{g≥n} g dµ → 0 przy

n→∞. Zatem dla ε > 0 istnieje M > 0 takie, że
∫
{g≥M} g dµ <

ε
2 . Wtedy

ν (A) =

∫
{g≥M}∩A

g dµ+

∫
{g<M}∩A

g dµ <
ε

2
+Mµ (A) .

Przyjmując δ = ε
2M dostajemy ν (A) < ε.

(⇐= ) Oczywiste.
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